Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(5): 2352-2418, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408190

RESUMO

This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.

2.
Org Lett ; 22(19): 7671-7675, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32961053

RESUMO

We report herein a visible-light-mediated C-H alkylation of pyridine derivatives that proceeds by simple combination of a large variety of N-alkoxypyridinium ions with alkanes in the presence of 2 mol % of fac-Ir(ppy)3 under blue illumination. The mild reaction conditions together with the high group functional tolerance make of this process a useful synthetic platform for the construction of structurally strained heterocycles. Detailed mechanistic investigations, including density functional theory calculations and quantum yield measurement, allowed us to understand factors controlling the reactivity and the selectivity of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA