Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 313: 123616, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32563792

RESUMO

Trichoderma harzianum has attracting attention for its potential alternative use in biofuel production, due to a recognized competence for high diversity glycoside hydrolases (GH) enzyme complex, including higher ß-glucosidases and auxiliary proteins, using low-cost carbon sources. This strain constitutively overexpressed the global regulator putative methyltransferase - LAE1, in order to improve the GHs production. The recombinant strain achieved 79-fold increase in lae1 expression and high GHs productivity. The evaluation of the LAE1 impact to induce the GHs used soluble and lignocellulose inexpensive carbon sources in a stirred-tank bioreactor. Using sugarcane bagasse with sucrose, the overexpression of lae1 resulted in significantly increment of gh61b (31x), cel7a (25x), bgl1(20x) and xyn3 (20x) genes expression. Reducing sugar released from pretreated sugarcane bagasse, which hydrolyzed by recombinant crude enzyme cocktail, achieved 41% improvement. Therefore, lae1 overexpression effectively is a promising improving GHs target for biomass degradation by T. harzianum.


Assuntos
Celulases , Saccharum , Trichoderma , Biomassa , Metiltransferases
2.
Front Microbiol ; 10: 1671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456751

RESUMO

Multidrug-resistant pathogens represent one of the biggest global healthcare challenges. Molecular diagnostics can guide effective antibiotics therapy but relies on validated, predictive biomarkers. Here we present a novel, universally applicable workflow for rapid identification of antimicrobial resistance (AMR) biomarkers from clinical Escherichia coli isolates and quantitatively evaluate the potential to recover causal biomarkers for observed resistance phenotypes. For this, a metagenomic plasmid library from 1,110 clinical E. coli isolates was created and used for high-throughput screening to identify biomarker candidates against Tobramycin (TOB), Ciprofloxacin (CIP), and Trimethoprim-Sulfamethoxazole (TMP-SMX). Identified candidates were further validated in vitro and also evaluated in silico for their diagnostic performance based on matched genotype-phenotype data. AMR biomarkers recovered by the metagenomics screening approach mechanistically explained 77% of observed resistance phenotypes for Tobramycin, 76% for Trimethoprim-Sulfamethoxazole, and 20% Ciprofloxacin. Sensitivity for Ciprofloxacin resistance detection could be improved to 97% by complementing results with AMR biomarkers that are undiscoverable due to intrinsic limitations of the workflow. Additionally, when combined in a multiplex diagnostic in silico panel, the identified AMR biomarkers reached promising positive and negative predictive values of up to 97 and 99%, respectively. Finally, we demonstrate that the developed workflow can be used to identify potential novel resistance mechanisms.

3.
Biotechnol Biofuels ; 10: 209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912831

RESUMO

BACKGROUND: The hydrolysis of biomass to simple sugars used for the production of biofuels in biorefineries requires the action of cellulolytic enzyme mixtures. During the last 50 years, the ascomycete Trichoderma reesei, the main source of industrial cellulase and hemicellulase cocktails, has been subjected to several rounds of classical mutagenesis with the aim to obtain higher production levels. During these random genetic events, strains unable to produce cellulases were generated. Here, whole genome sequencing and transcriptomic analyses of the cellulase-negative strain QM9978 were used for the identification of mutations underlying this cellulase-negative phenotype. RESULTS: Sequence comparison of the cellulase-negative strain QM9978 to the reference strain QM6a identified a total of 43 mutations, of which 33 were located either close to or in coding regions. From those, we identified 23 single-nucleotide variants, nine InDels, and one translocation. The translocation occurred between chromosomes V and VII, is located upstream of the putative transcription factor vib1, and abolishes its expression in QM9978 as detected during the transcriptomic analyses. Ectopic expression of vib1 under the control of its native promoter as well as overexpression of vib1 under the control of a strong constitutive promoter restored cellulase expression in QM9978, thus confirming that the translocation event is the reason for the cellulase-negative phenotype. Gene deletion of vib1 in the moderate producer strain QM9414 and in the high producer strain Rut-C30 reduced cellulase expression in both cases. Overexpression of vib1 in QM9414 and Rut-C30 had no effect on cellulase production, most likely because vib1 is already expressed at an optimal level under normal conditions. CONCLUSION: We were able to establish a link between a chromosomal translocation in QM9978 and the cellulase-negative phenotype of the strain. We identified the transcription factor vib1 as a key regulator of cellulases in T. reesei whose expression is absent in QM9978. We propose that in T. reesei, as in Neurospora crassa, vib1 is involved in cellulase induction, although the exact mechanism remains to be elucidated. The data presented here show an example of a combined genome sequencing and transcriptomic approach to explain a specific trait, in this case the QM9978 cellulase-negative phenotype, and how it helps to better understand the mechanisms during cellulase gene regulation. When focusing on mutations on the single base-pair level, changes on the chromosome level can be easily overlooked and through this work we provide an example that stresses the importance of the big picture of the genomic landscape during analysis of sequencing data.

4.
Appl Microbiol Biotechnol ; 101(10): 4139-4149, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28229208

RESUMO

Trichoderma reesei is a paradigm for the regulation and industrial production of plant cell wall-degrading enzymes. Among these, five xylanases, including the glycoside hydrolase (GH) family 11 XYN1 and XYN2, the GH10 XYN3, and the GH30 XYN4 and XYN6, were described. By genome mining and transcriptome analysis, a further putative xylanase, encoded by xyn5, was identified. Analysis of xyn5 from the genome-sequenced reference strain T. reesei QM6a shows that it encodes a non-functional, truncated form of XYN5. However, non-truncated orthologues are present in other genome sequenced Trichoderma spp., and sequencing of xyn5 in other T. reesei wild-type isolates shows that they harbor a putative functional xyn5 allele. In silico analysis and 3D modeling revealed that the encoded XYN5 has significant structural similarities to xylanases of the GH11 family, including a GH-typical substrate binding groove and a carboxylate pair in the active site. The xyn5 of wild-type strain TUCIM1282 was recombinantly expressed in a T. reesei strain with a (hemi)cellulase-free background and the corresponding protein purified to apparent homogeneity. The pH and temperature optima and the kinetic parameters of the purified XYN5 were pH 4, 50 °C, and V max = 2646 nkat/mg with a K m of 9.68 mg/ml. This functional xyn5 allele was used to replace the mutated version which led to an overall increase of the xylanolytic activity. These findings are of particular importance as GH11 xylanases are of high biotechnological relevance, and T. reesei is one of the main industrial producers of such lignocellulose-degrading enzymes.


Assuntos
Alelos , Endo-1,4-beta-Xilanases/genética , Trichoderma/enzimologia , Trichoderma/genética , Biocombustíveis , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genótipo , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Análise de Sequência de DNA , Trichoderma/classificação , Xilosidases/metabolismo
5.
J Biotechnol ; 246: 24-32, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28192217

RESUMO

This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and ß-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum.


Assuntos
Celulases/genética , Celulose/química , Fatores de Transcrição/genética , Trichoderma/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Celulases/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ativação Transcricional , Trichoderma/genética , Trichoderma/metabolismo , Regulação para Cima
6.
Biotechnol Biofuels ; 9(1): 178, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570542

RESUMO

BACKGROUND: Through binding to cellulose, expansin-like proteins are thought to loosen the structural order of crystalline surface material, thus making it more accessible for degradation by hydrolytic enzymes. Swollenin SWO1 is the major expansin-like protein from the fungus Trichoderma reesei. Here, we have performed a detailed characterization of a recombinant native form of SWO1 with respect to its possible auxiliary role in the enzymatic saccharification of lignocellulosic substrates. RESULTS: The swo1 gene was overexpressed in T. reesei QM9414 Δxyr1 mutant, featuring downregulated cellulase production, and the protein was purified from culture supernatant. SWO1 was N-glycosylated and its circular dichroism spectrum suggested a folded protein. Adsorption isotherms (25 °C, pH 5.0, 1.0 mg substrate/mL) revealed SWO1 to be 120- and 20-fold more specific for binding to birchwood xylan and kraft lignin, respectively, than for binding to Avicel PH-101. The SWO1 binding capacity on lignin (25 µmol/g) exceeded 12-fold that on Avicel PH-101 (2.1 µmol/g). On xylan, not only the binding capacity (22 µmol/g) but also the affinity of SWO1 (K d = 0.08 µM) was enhanced compared to Avicel PH-101 (K d = 0.89 µM). SWO1 caused rapid release of a tiny amount of reducing sugars (<1 % of total) from different substrates (Avicel PH-101, nanocrystalline cellulose, steam-pretreated wheat straw, barley ß-glucan, cellotetraose) but did not promote continued saccharification. Atomic force microscopy revealed that amorphous cellulose films were not affected by SWO1. Also with AFM, binding of SWO1 to cellulose nanocrystallites was demonstrated at the single-molecule level, but adsorption did not affect this cellulose. SWO1 exhibited no synergy with T. reesei cellulases in the hydrolysis of the different celluloses. However, SWO1 boosted slightly (1.5-fold) the reducing sugar release from a native grass substrate. CONCLUSIONS: SWO1 is a strongly glycosylated protein, which has implications for producing it in heterologous hosts. Although SWO1 binds to crystalline cellulose, its adsorption to xylan is much stronger. SWO1 is not an auxiliary factor of the enzymatic degradation of a variety of cellulosic substrates. Effect of SWO1 on sugar release from intact plant cell walls might be exploitable with certain (e.g., mildly pretreated) lignocellulosic feedstocks.

7.
Microb Cell Fact ; 15(1): 106, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287427

RESUMO

More than 70 years ago, the filamentous ascomycete Trichoderma reesei was isolated on the Solomon Islands due to its ability to degrade and thrive on cellulose containing fabrics. This trait that relies on its secreted cellulases is nowadays exploited by several industries. Most prominently in biorefineries which use T. reesei enzymes to saccharify lignocellulose from renewable plant biomass in order to produce biobased fuels and chemicals. In this review we summarize important milestones of the development of T. reesei as the leading production host for biorefinery enzymes, and discuss emerging trends in strain engineering. Trichoderma reesei has very recently also been proposed as a consolidated bioprocessing organism capable of direct conversion of biopolymeric substrates to desired products. We therefore cover this topic by reviewing novel approaches in metabolic engineering of T. reesei.


Assuntos
Celulases/metabolismo , Trichoderma/enzimologia , Biocatálise , Biomassa , Celulases/genética , Expressão Gênica , Lignina/metabolismo , Engenharia Metabólica/tendências , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA