Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Psychol Rep ; : 332941241253592, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743484

RESUMO

There is a growing need for clear and definitive guidelines to prevent firearm violence in communities across the United States. Recommendations explore the utility and feasibility of universal screenings and recommend utilizing universal screening due to a lack of a clear risk to it. Providers should also work to create risk reduction plans with patients as well. Furthermore, recommendations for mental health care, counseling, and bystander training are made for institutions and their providers.

2.
Oncogene ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719949

RESUMO

Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.

3.
Drugs R D ; 24(1): 117-121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413481

RESUMO

BACKGROUND: Selective serotonin reuptake inhibitors (SSRI) are commonly used for the treatment of depression and anxiety. Inhibition of serotonin reuptake in platelets increases bleeding risk in patients taking SSRIs. CASE: Here, we present the case of a 52-year-old patient who developed severe postsurgical bleeding requiring blood transfusion following panniculectomy. CONCLUSION: SSRI-induced bleeding is dose-related and strongly influenced by individual variations in drug metabolizing enzymes and transporters. Supplementary file1 (MP4 8441 KB).

4.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256242

RESUMO

Aberrant expression of the oncogenic retrotransposon LINE-1 is a hallmark of various cancer types, including non-small cell lung cancers (NSCLCs). Here, we present proof-of-principle evidence that LINE-1 analytes in extracellular vesicles (EVs) serve as tools for molecular diagnostics of NSCLC, with LINE-1 status in tumor cells and tissues mirroring the LINE-1 mRNA and ORF1p cargos of EVs from lung cancer cell culture conditioned media or human plasma. The levels of LINE-1 analytes in plasma EVs from ostensibly healthy individuals were higher in females than males. While the profiles of LINE-1 mRNA and ORF1p in African Americans compared to Hispanics were not significantly different, African Americans showed slightly higher ORF1p content, and 2-3 times greater ranges of LINE-1 values compared to Hispanics. Whole plasma ORF1p levels correlated with EV ORF1p levels, indicating that most of the circulating LINE-1 protein is contained within EVs. EV LINE-1 mRNA levels were elevated in patients with advanced cancer stages and in select patients with squamous cell carcinoma and metastatic tumors compared to adenocarcinomas. The observed EV LINE-1 mRNA profiles paralleled the patterns of ORF1p expression in NSCLC tissue sections suggesting that LINE-1 analytes in plasma EVs may serve to monitor the activity of LINE-1 retroelements in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Feminino , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Patologia Molecular , Retroelementos , Vesículas Extracelulares/genética , RNA Mensageiro/genética
5.
Ther Adv Cardiovasc Dis ; 17: 17539447231210170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38069578

RESUMO

Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Miocárdio/metabolismo , Coração , Transdução de Sinais , Inflamação/tratamento farmacológico
6.
iScience ; 26(7): 107166, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485349

RESUMO

Unpublished data and unused samples are common byproducts of research activity, but little is known about the scope and economic impact of their disuse. To fill this knowledge gap, we collected self-reported anonymous survey responses from 301 academic and government scientists from randomly selected institutions. Respondents estimated that they published ∼60% of their data and 95% had unpublished data. Of those collecting specimens, 60% stored unused samples. Systemic and logistical issues were identified as major contributory factors. The median cumulative self-reported estimated value of unused resources per researcher was $28,857, with life science ($36k) and government ($109k) researchers reporting the costliest assets. Using NSF headcounts, we estimated that the current cumulative value of unused resources at universities is approximately $6.2 billion, about 7% of the current annual R&D budget. These findings provide actionable information that can be used by decision makers to reduce obstacles that undermine scientific progress and productivity.

7.
Front Med (Lausanne) ; 10: 1198088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484840

RESUMO

Randomized controlled trials are considered the 'gold standard' to reduce bias by randomizing patients to an experimental intervention, versus placebo or standard of care cohort. There are inherent challenges to enrolling a standard of care or cohorts: costs, site engagement logistics, socioeconomic variability, patient willingness, ethics of placebo interventions, cannibalizing the treatment arm population, and extending study duration. The COVID-19 pandemic has magnified aspects of constraints in trial recruitment and logistics, spurring innovative approaches to reducing trial sizes, accelerating trial accrual while preserving statistical rigor. Using data from medical records and databases allows for construction of external control arms that reduce the costs of an external control arm (ECA) randomized to standard of care. Simultaneously examining covariates of the clinical outcomes in ECAs that are being measured in the interventional arm can be particularly useful in phase 2 trials to better understand social and genetic determinants of clinical outcomes that might inform pivotal trial design. The FDA and EMA have promulgated a number of publicly available guidance documents and qualification reports that inform the use of this regulatory science tool to streamline clinical development, of phase 4 surveillance, and policy aspects of clinical outcomes research. Availability and quality of real-world data (RWD) are a prevalent impediment to the use of ECAs given such data is not collected with the rigor and deliberateness that characterizes prospective interventional control arm data. Conversely, in the case of contemporary control arms, a clinical trial outcome can be compared to a contemporary standard of care in cases where the standard of care is evolving at a fast pace, such as the use of checkpoint inhibitors in cancer care. Innovative statistical methods are an essential aspect of an ECA strategy and regulatory paths for these innovative approaches have been navigated, qualified, and in some cases published.

9.
Front Immunol ; 13: 1033483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389785

RESUMO

Lung cancer is currently the leading cause of cancer-related deaths worldwide. Significant improvements in lung cancer therapeutics have relied on a better understanding of lung cancer immunity and the development of novel immunotherapies, as best exemplified by the introduction of PD-1/PD-L1-based therapies. However, this improvement is limited to lung cancer patients who respond to anti-PD-1 immunotherapy. Further improvements in immunotherapy may benefit from a better understanding of innate immune response mechanisms in the lung. Toll-like receptors (TLRs) are a key component of the innate immune response and mediate the early recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLR signaling modulates the tumor microenvironment from "cold" to "hot" leading to immune sensitization of tumor cells to treatments and improved patient prognosis. In addition, TLR signaling activates the adaptive immune response to improve the response to cancer immunotherapy through the regulation of anti-tumor T cell activity. This review will highlight recent progress in our understanding of the role of TLRs in lung cancer immunity and immunotherapy.


Assuntos
Neoplasias Pulmonares , Receptores Toll-Like , Humanos , Neoplasias Pulmonares/terapia , Imunidade Inata , Imunidade Adaptativa , Fatores Imunológicos , Moléculas com Motivos Associados a Patógenos , Imunoterapia , Microambiente Tumoral
10.
Subcell Biochem ; 100: 115-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301493

RESUMO

The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.


Assuntos
Envelhecimento , Histona Acetiltransferases , Neoplasias , Sirtuínas , Humanos , Acetilação , Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Neoplasias/genética , Sirtuínas/genética , Sirtuínas/metabolismo
11.
BMC Bioinformatics ; 23(1): 375, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100885

RESUMO

BACKGROUND: Long interspersed element 1 (LINE-1 or L1) retrotransposons are mobile elements that constitute 17-20% of the human genome. Strong correlations between abnormal L1 expression and several human diseases have been reported. This has motivated increasing interest in accurate quantification of the number of L1 copies present in any given biologic specimen. A main obstacle toward this aim is that L1s are relatively long DNA segments with regions of high variability, or largely present in the human genome as truncated fragments. These particularities render traditional alignment strategies, such as seed-and-extend inefficient, as the number of segments that are similar to L1s explodes exponentially. This study uses the pattern matching methodology for more accurate identification of L1s. We validate experimentally the superiority of pattern matching for L1 detection over alternative methods and discuss some of its potential applications. RESULTS: Pattern matching detected full-length L1 copies with high precision, reasonable computational time, and no prior input information. It also detected truncated and significantly altered copies of L1 with relatively high precision. The method was effectively used to annotate L1s in a target genome and to calculate copy number variation with respect to a reference genome. Crucial to the success of implementation was the selection of a small set of k-mer probes from a set of sequences presenting a stable pattern of distribution in the genome. As in seed-and-extend methods, the pattern matching algorithm sowed these k-mer probes, but instead of using heuristic extensions around the seeds, the analysis was based on distribution patterns within the genome. The desired level of precision could be adjusted, with some loss of recall. CONCLUSION: Pattern matching is more efficient than seed-and-extend methods for the detection of L1 segments whose characterization depends on a finite set of sequences with common areas of low variability. We propose that pattern matching may help establish correlations between L1 copy number and disease states associated with L1 mobilization and evolution.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos
12.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887150

RESUMO

Most living organisms have in their genome a sizable proportion of DNA sequences capable of mobilization; these sequences are commonly referred to as transposons, transposable elements (TEs), or jumping genes. Although long thought to have no biological significance, advances in DNA sequencing and analytical technologies have enabled precise characterization of TEs and confirmed their ubiquitous presence across all forms of life. These findings have ignited intense debates over their biological significance. The available evidence now supports the notion that TEs exert major influence over many biological aspects of organismal life. Transposable elements contribute significantly to the evolution of the genome by giving rise to genetic variations in both active and passive modes. Due to their intrinsic nature of mobility within the genome, TEs primarily cause gene disruption and large-scale genomic alterations including inversions, deletions, and duplications. Besides genomic instability, growing evidence also points to many physiologically important functions of TEs, such as gene regulation through cis-acting control elements and modulation of the transcriptome through epigenetic control. In this review, we discuss the latest evidence demonstrating the impact of TEs on genome stability and the underling mechanisms, including those developed to mitigate the deleterious impact of TEs on genomic stability and human health. We have also highlighted the potential therapeutic application of TEs.


Assuntos
Elementos de DNA Transponíveis , Instabilidade Genômica , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genômica , Humanos , Sequências Reguladoras de Ácido Nucleico , Transcriptoma
13.
J Pers Med ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629136

RESUMO

Current best practices in tumor registries provide a glimpse into a limited time frame over the natural history of disease, usually a narrow window around diagnosis and biopsy. This creates challenges meeting public health and healthcare reimbursement policies that increasingly require robust documentation of long-term clinical trajectories, quality of life, and health economics outcomes. These challenges are amplified for underrepresented minority (URM) and other disadvantaged populations, who tend to view the institution of clinical research with skepticism. Participation gaps leave such populations underrepresented in clinical research and, importantly, in policy decisions about treatment choices and reimbursement, thus further augmenting health, social, and economic disparities. Cloud computing, mobile computing, digital ledgers, tokenization, and artificial intelligence technologies are powerful tools that promise to enhance longitudinal patient engagement across the natural history of disease. These tools also promise to enhance engagement by giving participants agency over their data and addressing a major impediment to research participation. This will only occur if these tools are available for use with all patients. Distributed ledger technologies (specifically blockchain) converge these tools and offer a significant element of trust that can be used to engage URM populations more substantively in clinical research. This is a crucial step toward linking composite cohorts for training and optimization of the artificial intelligence tools for enhancing public health in the future. The parameters of an idealized clinical genomic registry are presented.

14.
iScience ; 25(4): 104142, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35434547

RESUMO

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.

15.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408821

RESUMO

Long Interspersed Element-1 (LINE-1) is an oncogenic human retrotransposon that 'copies and pastes' DNA into new locations via reverse transcription. Given that enzymatically active LINE-1 can be exported in extracellular vesicles (EVs), and that LINE-1 mRNA and its two encoded proteins, ORF1p and ORF2p, are required for retrotransposition, the present study examined LINE-1 EV loading patterns relative to reverse transcriptase (RT) activity in vivo and in vitro. Density gradient ultracentrifugation identified conserved patterns of LINE-1 mRNA and protein distribution in EVs, with RT activity readily detected in EV fractions containing both LINE-1 mRNA and protein. Unlike whole cell and tissue lysates, the ORF1p in EVs was detected as a dimer. EVs from ostensibly healthy plasma donors showed variable but consistent ORF1p profiles, with residual levels of LINE-1 mRNA measured in some but not all samples. EVs from cancer cell lines had elevated mean LINE-1 levels and 5-85 times greater RT activity than EVs from normal cells or healthy plasma. EV RT activity was associated with EV LINE-1 mRNA content and was highest in cell lines that also expressed an elevated expression of ORF1p and ORF2p. Given that LINE-1 activation is a hallmark of many cancer types, our findings suggest that an EV LINE-1 'liquid biopsy' may be developed to monitor LINE-1 activity during the course of malignant progression.


Assuntos
Vesículas Extracelulares , Elementos Nucleotídeos Longos e Dispersos , Neoplasias Pulmonares , Endonucleases , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pulmonares/genética , Proteínas , RNA Mensageiro/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Transcrição Reversa
16.
Front Med (Lausanne) ; 9: 757212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372454

RESUMO

The field of precision medicine has undergone significant growth over the past 10 years. Despite increasing applications of clinical genetic and genomic testing, studies consistently report limited knowledge of genetics and genomics among healthcare providers. This study explored barriers to the implementation of precision medicine by surveying physicians working in a large academic medical center. We assessed prior training in genetics, use of genetic testing in the clinic, desire for additional resources in genetics and genomic medicine and perceived barriers to successful integration of precision medicine. Only 20% of respondents reported moderate or extensive training in genetics. Physicians with limited or no training in genetics were less likely to have ordered a genetic test for any purpose. Furthermore, 41% of physicians responded that their lack of training identifying appropriate genetic tests and how to interpret genetic testing results was the most significant barrier to ordering genetic testing for their patients. These findings suggest that future efforts to realize the promise of precision medicine should focus on the integration of training programs for non-genetics trained healthcare providers.

17.
Cancer Res Commun ; 2(8): 884-893, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36923308

RESUMO

Tumors accumulated with infiltrated immune cells (hot tumors) have a higher response rate to immune checkpoint blockade, when compared with those with minimal T-cell infiltration (cold tumors). We report here that patients with lung cancer with different racial backgrounds harbored distinct immune cell profiles in the tumor microenvironment. Compared with African Americans (AA), Caucasian Americans (CA) exhibited increased immune cell infiltration and vasculature, and increased survival. Changes of survival and immune profile were most pronounced among active smokers and nonsmokers, compared with former smokers and total patients. Neighborhood analysis showed that immune cells accumulated around cancer cells in CAs but not AAs. Our findings reveal intrinsic biological differences between AA and CA patients with lung cancer, suggesting that treatment plans should be tailored for patients with different racial backgrounds. Significance: We report biological racial differences among patients with lung cancer where Caucasians present a hot tumor microenvironment compared with cold tumor in AAs. Treatment plans should be customized to maximize therapeutic outcomes.


Assuntos
Neoplasias Pulmonares , Grupos Raciais , Humanos , Negro ou Afro-Americano , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/imunologia , Microambiente Tumoral/imunologia , Brancos
18.
Mol Cell Biol ; 42(1): e0048321, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34748401

RESUMO

From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anticancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anticancer treatment scenario involving the imposition of stress to target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.


Assuntos
Metaboloma/fisiologia , Neoplasias/etiologia , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Epigenômica/métodos , Humanos , Hipóxia/metabolismo , Estresse Oxidativo/fisiologia
19.
Comput Struct Biotechnol J ; 19: 5667-5677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765087

RESUMO

Nearly half of the human genome is occupied by repetitive sequences of ancient virus-like genetic elements. The largest class, comprising 17% of the genome, belong to the type 1 Long INterspersed Elements (LINE-1) and are the only class capable of autonomous propagation in the genome. When epigenetic silencing mechanisms of LINE-1 fail, the proteins encoded by LINE-1 engage in reverse transcription to make new copies of their own or other DNAs that are pasted back into the genome. To elucidate how LINE-1 is dysregulated as a result of carcinogen exposure, we developed a computational model of key elements in the LINE-1 lifecycle, namely, the role of cytosolic ribonuclease (RNase), RNA interference (RNAi) by the antisense ORF0 RNA, and sequestration of LINE-1 products into stress granules and multivesicular structures. The model showed that when carcinogen exposure is represented as either a sudden increase in LINE-1 mRNA count, or as an increase in mRNA transcription rate, the retrotransposon copy number exhibits a distinct threshold behavior above which LINE-1 enters a positive feedback loop that allows the cDNA copy number to grow exponentially. We also found that most of the LINE-1 RNA was degraded via the RNAase pathway and that neither ORF0 RNAi, nor the sequestration of LINE-1 products into granules and multivesicular structures, played a significant role in regulating the retrotransposon's life cycle. Several aspects of the prediction agree with experimental results and indicate that the model has significant potential to inform future experiments related to LINE-1 activation.

20.
Curr Opin Pediatr ; 33(6): 564-569, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561358

RESUMO

PURPOSE OF REVIEW: Pharmacogenomic insights provide an opportunity to optimize medication dosing regimens and patient outcomes. However, the potential for interindividual genomic variability to guide medication dosing and toxicity monitoring is not yet standard of care. In this review, we present advances for the thiopurines, anthracyclines and vincristine and provide perspectives on the actionability of pharmacogenomic guidance in the future. RECENT FINDINGS: The current guideline on thiopurines recommends that those with normal predicted thiopurine methyltransferase and NUDT15 expression receive standard-of-care dosing, while 'poor metabolizer' haplotypes receive a decreased 6-mercaptopurine starting dose to avoid bone marrow toxicity. Emerging evidence established significant polygenic contributions that predispose to anthracycline-induced cardiotoxicity and suggest this knowledge be used to identify those at higher risk of complications. In the case of vincristine, children who express CYP3A5 have a significantly reduced risk of peripheral neuropathy compared with those expressing an inactive form or the CYP3A4 isoform. SUMMARY: The need for adequately powered pediatric clinical trials, coupled with the study of epigenetic mechanisms and their influence on phenotypic variation and the integration of precision survivorship into precision approaches are featured as important areas for focused investments in the future.


Assuntos
Neoplasias , Farmacogenética , Cardiotoxicidade , Criança , Humanos , Oncologia , Mercaptopurina , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA