Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; 36(1): 440-444, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32496133

RESUMO

The physicochemical properties, proximate composition, minerals, total polyphenols, carotenoids, phenolic compounds, antioxidant, and antibacterial activities of ciricote (Cordia dodecandra A. DC.) tropical fruit were investigated. Minerals were quantified by using micro-Energy Dispersive X-Ray Fluorescence. Lutein and ß-carotene were identified in ciricote fruit by using UPLC-PDA analysis. The highest values of the total polyphenols content and antioxidant activity were presented in ethanolic crude extracts obtaining by the ultrasonic-assisted method with freeze-dried fruit. The phenolic acids profile was identified and quantified by UPLC-PDA-ESI-MS. The main phenolic acids were caffeoyl hexoside, rufescenolide, quercetin 3-O-rutinoside, and rosmarinic acid. The ciricote extracts presented antibacterial activity against Staphylococus aureus (Gram+) and Salmonella typhymurium (Gram-). In conclusion, the ciricote (Cordia dodecandra A. DC.) tropical fruits could be very useful source of biological macromolecules, micro-elements, and phytochemical compounds for the food and pharmaceutical industry.


Assuntos
Antibacterianos/farmacologia , Antioxidantes , Cordia , Frutas , Antioxidantes/farmacologia , Cordia/química , Frutas/química , México , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
2.
Ultrason Sonochem ; 76: 105658, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34242865

RESUMO

Phenolic compounds are secondary metabolites involved in plant adaptation processes. The development of extraction procedures, quantification, and identification of this compounds in habanero pepper (Capsicum chinense) leaves can provide information about their accumulation and possible biological function. The main objective of this work was to study the effect of the UAE method and the polarity of different extraction solvents on the recovery of phenolic compounds from C. chinense leaves. Quantification of the total phenolic content (TPC), antioxidant activity (AA) by ABTS+ and DPPH radical inhibition methods, and the relation between the dielectric constant (ε) as polarity parameter of the solvents and TPC using Weibull and Gaussian distribution models was analyzed. The major phenolic compounds in C. chinense leaves extracts were identified and quantified by UPLC-PDA-ESI-MS/MS. The highest recovery of TPC (24.39 ± 2.41 mg GAE g-1 dry wt) was obtained using MeOH (50%) by UAE method. Correlations between TPC and AA of 0.89 and 0.91 were found for both radical inhibition methods (ABTS+ and DPPH). The Weibull and Gaussian models showed high regression values (0.93 to 0.95) suggesting that the highest phenolic compounds recovery is obtained using solvents with "ε" values between 35 and 52 by UAE. The major compounds were identified as N-caffeoyl putrescine, apigenin, luteolin and diosmetin derivatives. The models presented are proposed as a useful tool to predict the appropriate solvent composition for the extraction of phenolic compounds from C. chinense leaves by UAE based on the "ε" of the solvents for future metabolomic studies.


Assuntos
Antioxidantes/isolamento & purificação , Capsicum/química , Fracionamento Químico/métodos , Fenóis/isolamento & purificação , Folhas de Planta/química , Solventes/química , Ondas Ultrassônicas , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Fenóis/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
BMC Plant Biol ; 21(1): 62, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494714

RESUMO

BACKGROUND: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.


Assuntos
Capsicum/imunologia , Colletotrichum/fisiologia , Consórcios Microbianos/fisiologia , Fosfolipídeos/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Transdução de Sinais , Capsicum/genética , Capsicum/microbiologia , Colletotrichum/isolamento & purificação , Diacilglicerol Quinase , Difosfatos/metabolismo , Glicerol/análogos & derivados , Glicerol/metabolismo , Interações Hospedeiro-Patógeno , Ácidos Fosfatídicos/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Fosfolipases Tipo C/metabolismo
4.
Data Brief ; 20: 761-766, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30211271

RESUMO

This article contains metadata related to the research article "Behavior of genetic diversity in F1 crosses of selected accessions of Jatropha curcas" (Sánchez-Velázquez et al., 2018). The data presented in this article belong to a diversity study using ISSR molecular markers of a J. curcas germplasm collection that includes bred offspring and analysis of similarity between accessions. We tested previously reported primers in PCR assays to obtain a genetic profile of the accessions. These profiles were used to calculate Dice similarities. Similarity between offspring and parentals can be compared either with the maternal side or paternal side.

5.
Planta ; 225(2): 393-401, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16821040

RESUMO

Aluminum (Al(3+)) has been recognized as a main toxic factor in crop production in acid lands. Phosphatidic acid (PA) is emerging as an important lipid signaling molecule and has been implicated in various stress-signaling pathways in plants. In this paper, we focus on how PA generation is affected by Al(3+) using Coffea arabica suspension cells. We pre-labeled cells with [(32)P]orthophosphate ((32)Pi) and assayed for (32)P-PA formation in response to Al(3+). Treating cells for 15 min with either AlCl(3) or Al(NO(3))(3) inhibited the formation of PA. In order to test how Al(3+) affected PA signaling, we used the peptide mastoparan-7 (mas-7), which is known as a very potent stimulator of PA formation. The Al(3+) inhibited mas-7 induction of PA response, both before and after Al(3+) incubation. The PA involved in signaling is generated by two distinct phospholipid signaling pathways, via phospholipase D (PLD; EC: 3.1.4.4) or via Phospholipase C (PLC; EC: 3.1.4.3), and diacylglycerol kinase (DGK; EC 2.7.1.107). By labeling with (32)Pi for short periods of time, we found that PA formation was inhibited almost 30% when the cells were incubated with AlCl(3) suggesting the involvement of the PLC/DGK pathway. Incubation of cells with PLC inhibitor, U73122, affected PA formation, like AlCl(3) did. PLD in vivo activation by mas-7 was reduced by Al(3+). These results suggest that PA formation was prevented through the inhibition of the PLC activity, and it provides the first evidence for the role of Al toxicity on PA production.


Assuntos
Ácidos Fosfatídicos/biossíntese , Fosfolipases Tipo C/metabolismo , Cloreto de Alumínio , Compostos de Alumínio/farmacologia , Células Cultivadas , Cloretos/farmacologia , Coffea/citologia , Coffea/efeitos dos fármacos , Coffea/enzimologia , Diacilglicerol Quinase/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/farmacologia , Fosfolipase D/metabolismo , Transdução de Sinais , Venenos de Vespas/farmacologia
6.
J Inorg Biochem ; 101(2): 362-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17161461

RESUMO

Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway.


Assuntos
Alumínio/antagonistas & inibidores , Alumínio/toxicidade , Coffea/efeitos dos fármacos , Coffea/metabolismo , Fosfolipídeos/metabolismo , Ácido Silícico/farmacologia , Linhagem Celular , Concentração de Íons de Hidrogênio , Inositol 1,4,5-Trifosfato/metabolismo , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
7.
Plant Signal Behav ; 2(4): 263-4, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19704674

RESUMO

The cascade of phospholipid signals, is one of the main systems of cellular transduction, and is related to other signal transduction mechanisms. These include the interaction between the generation of second messengers and different proteins such as ionic channels, protein kinase proteins, signaling proteins and transcription factors, among others. The result of this interaction could alter cellular metabolism. This phospholipid signal cascade is activated by the changes on the environment such as phosphate starvation, water and saline stress, as well as plant-pathogen interactions.Because aluminum has been considered a main toxic factor for agriculture carried out in acid soils, many researches have focused on aluminum toxic mechanism in plants.1,2 We contribute by researching on the aluminum effects on phospholipids signalling. We focused on phosphatidic acid (PA), because its relevant role in signal cascades in plants. Also PA is the precursor of most of the phospholipids in their de novo biosynthesis. Our results show a dramatic inhibitory effects by aluminum on PA. The most important PA formation routes in plant signalling are: phospholipase C (PLC)/diacylglycerol kinase (DGK) and phospholipase D (PLD).3 We investigated which one of the pathways was affected by aluminum treatment and found that aluminum affects mainly the PLC/DGK route of PA formation. We conclude that Al(3+) not only could generate a signal cascade in plants, but that it can also modulate other signal cascades generated by others stress. The aim of this addendum is to discuss the possible involvements of other phospholipids in the aluminum toxicity in plant cells.

8.
Plant Physiol Biochem ; 43(9): 874-81, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16297634

RESUMO

Recent results, fundamentally obtained from animal tissues, suggest that polyamines (Pas), essential compounds for the growth and development of all life organisms, may interact with a signal transduction cascade. Because Pas are highly positive charged compounds, their binding with phospholipids involved in signal transduction is likely to be the case. In this work, the in vivo effect of Pas on some important components of phospholipid signal transduction pathway was studied, by the first time, in plant tissue. Endogenous Pas content varied during the culture cycle of Coffea arabica cells: putrescine (Put) levels increased at the end of the stationary phase, both spermidine (Spd) and spermine (Spm) accumulated at the beginning of the linear growth phase. Cells that were incubated with Put presented a significant increase in phospholipase D (PLD) (EC: 3.1.4.4) activity, phospholipase C (PLC) (EC: 3.1.4.3) activity decreased, and the effect on lipid kinases was less marked. However, the incubation of the cells with Spd and Spm significantly stimulated the lipid kinases activities, fundamentally increased the formation of phosphatidyl inositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2), while the effect on PLC and PLD activities was minor when compared with the cells treated with Put. The results presented here suggest that Pas may modulate the cellular signal of C. arabica cells by differentially affecting components of the phospholipid cascade.


Assuntos
Poliaminas Biogênicas/fisiologia , Coffea/metabolismo , Fosfolipídeos/metabolismo , Transdução de Sinais/fisiologia , Coffea/citologia , Coffea/enzimologia , Fosfolipase D/metabolismo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA