Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765741

RESUMO

Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.

2.
Mol Cancer Ther ; 20(12): 2433-2445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34552006

RESUMO

The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kß, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
3.
EMBO Mol Med ; 13(7): e13502, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033220

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Humanos , Macrófagos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/genética
4.
Biochem J ; 478(6): 1199-1225, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33740047

RESUMO

PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kß, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kß. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato
5.
Theranostics ; 9(22): 6369-6379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588223

RESUMO

Rapid, easy and early pancreatic cancer diagnosis and therapeutic follow up continue to necessitate an increasing attention towards the development of effective treatment strategies for this lethal disease. The non invasive quantitative assessment of pancreatic heterogeneity is limited. Here, we report the development of a preclinical imaging protocol using ultrasonography and shear wave technology in an experimental in situ pancreatic cancer model to measure the evolution of pancreatic rigidity. Methods: Intrapancreatic tumors were genetically induced by mutated Kras and p53 in KPC mice. We evaluated the feasiblity of a live imaging protocol by assessing pancreas evolution with Aixplorer technology accross 36 weeks. Lethality induced by in situ pancreatic cancer was heterogeneous in time. Results: The developed method successfully detected tumor mass from 26 weeks onwards at minimal 0.029 cm3 size. Elastography measurements using shear wave methodology had a wide detection range from 4.7kPa to 166.1kPa. Protumorigenic mutations induced a significant decrease of the rigidity of pancreatic tissue before tumors developed in correlation with the detection of senescent marker p16-positive cells. An intratumoral increased rigidity was quantified and found surprisingly heterogeneous. Tumors also presented a huge inter-individual heterogeneity in their rigidity parameters; tumors with low and high rigidity at detection evolve very heterogeneously in their rigidity parameters, as well as in their volume. Increase in rigidity in tumors detected by ultrafast elasticity imaging coincided with detection of tumors by echography and with the detection of the inflammatory protumoral systemic condition by non invasive follow-up and of collagen fibers by post-processing tumoral IHC analysis. Conclusion: Our promising results indicate the potential of the shear wave elastography to support individualization of diagnosis in this most aggressive disease.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Senescência Celular/genética , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Proteína Supressora de Tumor p53/genética
6.
Cancers (Basel) ; 10(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865155

RESUMO

For patients with metastatic pancreatic cancer that are not eligible for surgery, signal-targeted therapies have so far failed to significantly improve survival. These therapeutic options have been tested in phase II/III clinical trials mostly in combination with the reference treatment gemcitabine. Innovative therapies aim to annihilate oncogenic dependency, or to normalize the tumoural stroma to allow immune cells to function and/or re-vascularisation to occur. Large scale transcriptomic and genomic analysis revealed that pancreatic cancers display great heterogeneity but failed to clearly delineate specific oncogene dependency, besides oncogenic Kras. Beyond these approaches, proteomics appears to be an appropriate approach to classify signal dependency and to identify specific alterations at the targetable level. However, due to difficulties in sampling, proteomic data for this pathology are scarce. In this review, we will discuss the current state of clinical trials for targeted therapies against pancreatic cancer. We will then highlight the most recent proteomic data for pancreatic tumours and their metastasis, which could help to identify major oncogenic signalling dependencies, as well as provide future leads to explain why pancreatic tumours are intrinsically resistant to signal-targeted therapies. We will finally discuss how studies on phosphatidylinositol-3-kinase (PI3K) signalling, as the paradigmatic pro-tumoural signal downstream of oncogenic Kras in pancreatic cancer, would benefit from exploratory proteomics to increase the efficiency of targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA