Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; (35): 4244-52, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16932817

RESUMO

Three molecular structures are reported which utilize the NiN(2)S(2) ligands -, (bis(mercaptoethyl)diazacyclooctane)nickel and -', bis(mercaptoethyl)diazacycloheptane)nickel, as metallodithiolate ligands to rhodium in oxidation states i, ii and iii. For the Rh(I) complex, the NiN(2)S(2) unit behaves as a bidentate ligand to a square planar Rh(I)(CO)(PPh(3))(+) moiety with a hinge or dihedral angle (defined as the intersection of NiN(2)S(2) and S(2)Rh(C)(P) planes) of 115 degrees . Supported by -' ligands, the Rh(II) oxidation state occurs in a dirhodium C(4) paddlewheel complex wherein four NiN(2)S(2) units serve as bidentate bridging ligands to two singly-bonded Rh(II) ions at 2.893(8) A apart. A compilation of the remarkable range of M-M distances in paddlewheel complexes which use NiN(2)S(2) complexes as paddles is presented. The Rh(III) state is found as a tetrametallic [Rh(-')(3)](3+) cluster, roughly shaped like a boat propeller and structurally similar to tris(bipyridine)metal complexes.


Assuntos
Níquel/química , Compostos Organometálicos/química , Ródio/química , Ligantes , Estrutura Molecular , Compostos de Sulfidrila/química
2.
Inorg Chem ; 45(1): 119-26, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16390047

RESUMO

The synthesis of the metallodithiolate derivative of tungsten pentacarbonyl from the reaction of photogenerated W(CO)(5)THF and Ni-1 ((1,5-bis(2-mercapto-2-methylpropane)-1,5-diazacyclooctanato)nickel(II)) is described, along with its crystal structure. In N,N-dimethylformamide solution, the pentacarbonyl exists in equilibrium with its tetracarbonyl analogue and carbon monoxide. The pentacarbonyl complex stereoselectively loses cis carbonyl ligands, as is apparent from (13)CO-labeling studies, where the thus-formed tetracarbonyl tungsten complex resulting from chelate ring-closure is preferentially (13)CO-labeled among the two mutually trans CO groups. The kinetics of the addition of CO to the tetracarbonyl to afford the metal pentacarbonyl were monitored by means of in situ infrared spectroscopy in the nu(CO) region at CO pressures between 28 and 97 bar and temperatures over the range 45-60 degrees C. Under these conditions, there was no evidence for W-S bond cleavage in the pentacarbonyl complex with concomitant formation of W(CO)(6). These studies reveal that the tetracarbonyl complex and CO are only slightly unstable with respect to the formation of the pentacarbonyl complex, with an equilibrium constant at 50 degrees C of about 2.8 M(-1) or DeltaG degrees = -1.4 kJ/mol. The activation parameters determined for the ring-opening process (DeltaH = 89.1 kJ/mol and DeltaS = -37.2 J/mol.K) suggest a solvent-assisted concerted ring-opening mechanism.

3.
J Am Chem Soc ; 127(49): 17323-34, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16332082

RESUMO

The physical properties and structures of a series of six complexes of the type (NiN(2)S(2))W(CO)(4) have been used to establish electronic and steric parameters for square planar NiN(2)S(2) complexes as bidentate, S-donor ligands. According to the nu(CO) stretching frequencies and associated computed Cotton-Kraihanzel force constants of the tungsten carbonyl adducts, there is little difference in donor abilities of the five neutral NiN(2)S(2) metallodithiolate ligands in the series. The dianionic Ni(ema)(2)(-) (ema = N,N'-ethylenebis(2-mercaptoacetamide)) complex transfers more electron density onto the W(CO)(4) moiety. A ranking of donor abilities and a comparison with classical bidentate ligands is as follows: Ni(ema)(=) > {[NiN(2)S(2)](0)} > bipy approximately phen > Ph(2)PCH(2)CH(2)PPh(2) > Ph(2)PCH(2)PPh(2). Electrochemical data from cyclic voltammetry find that the reduction event in the (NiN(2)S(2))W(CO)(4) derivatives is shifted to more positive potentials by ca. 0.5 V compared to the ca. -2 V Ni(II/I) redox event in the free NiN(2)S(2) ligand, consistent with the electron drain from the nickel-dithiolate ligands by the W(CO)(4) acceptor. Differences in Ni(II/I) DeltaE(1/2) values appear to have a ligand dependence which is related to a structural feature of the hinge angle imposed by the (mu-SR)(2) bridges. Thus the angle formed by the intersection of NiN(2)S(2)/WS(2)C(2) planes has been established by X-ray diffraction analyses as a unique orientational feature of the nickel-dithiolate ligands in contrast to classical diphosphine or diimine ligands and ranges in value from 136 to 107 degrees . Variable-temperature (13)C NMR studies show that the spatial orientations of the ligands remained fixed with respect to the W(CO)(4) moiety to temperatures of 100 degrees C.


Assuntos
Níquel/química , Nitrogênio/química , Compostos Organometálicos/química , Enxofre/química , Sítios de Ligação , Elétrons , Ligantes , Modelos Químicos , Estrutura Molecular
4.
Inorg Chem ; 44(4): 875-83, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15859264

RESUMO

The nickel(II) complex of an N2S2 ligand, derived from a diazacycle, N,N'-bis(mercaptoethyl)-1,5-diazacycloheptane, (bme-dach)Ni, Ni-1', serves as a metallodithiolate ligand to NiII, CuI, ZnII, Ag, and PbII. The binding ability of the NiN2S2 ligand to the metal ions was established through spectrochemical titrations in aqueous media and compared to classical S-donor ligands. For M = Ni, Zn, Pb, binding constants, log K = ca. 2. were computed for 1:1 Ni-1'/M(solvate) adducts; for Ag+ and Cu+, the 3:2 (Ni-1')3M2 adducts were the first formed products even in water with log beta3,2 values of 26 and >30, respectively. In all cases, the binding ability of Ni-S-R is intermediate between that of a free thiolate and a free thioether. The great specificity for copper over nickel and zinc by N2S2Ni, which serves as a reasonable structural model for the distal nickel of the acetyl CoA synthase active site, relates to biochemical studies of heterogeneity (metal content and type) in various preparations of acetyl CoA synthase enzyme.


Assuntos
Acetato-CoA Ligase/metabolismo , Níquel/química , Nitrogênio/química , Compostos Organometálicos/química , Enxofre/química , Tolueno/análogos & derivados , Tolueno/química , Sítios de Ligação , Cátions , Cobre/química , Ligantes , Metais/química , Estrutura Molecular , Análise Espectral , Titulometria
7.
J Am Chem Soc ; 125(2): 518-24, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12517165

RESUMO

The established ability of the Fe(II) bridging hydride species (micro-H)(micro-pdt)[Fe(CO)2(PMe3)]2+, 1-H+, to take-up and heterolytically activate dihydrogen, resulting in H/D scrambling of H2/D2 and H2/D2O mixtures (Zhao et al. Inorg. Chem. 2002, 41, 3917) has prompted a study of simultaneous alkene/H2 activation by such [Fe]H2ase model complexes. That the required photolysis produced an open site was substantiated by substitution of CO in 1-H+ by CH3CN with formation of structurally characterized [(micro-H)(micro-pdt)[Fe(CO)2(PMe3)][Fe(CO)(CH3CN)(PMe3)]]+[PF6]-. Under similar photolytic conditions, H/D exchange reactions between D2 and terminal alkenes (ethylene, propene and 1-butene), but not bulkier alkenes such as 2-butene or cyclohexene, were catalyzed by 1-H+ and the edt (SCH2CH2S) analogue, 2-H+. Substantial regioselectivity for H/D exchange at the internal vinylic hydrogen was observed. The extent to which the olefins were deuterium enriched vs deuterated was catalyst dependent. The stabilizing effect of the binuclear chelating ligands, SCH2CH2CH2S, pdt, and SCH2CH2S, edt, is required for the activity of binuclear catalysts, as the mono-dentate micro-SEt analogue decomposed to inactive products under the photolytic conditions of the catalysis. Reactions of 1 and 2 with EtOSO2CF3 yielded the S-alkylated products, [(micro-SCH2CH2CH2SEt)[Fe(CO)2(PMe3)]2]+[SO3CF3]- (1-Et+), and 2-Et+, rather than micro-C2H5 analogues to the micro-H of 1-H+. The stability and lack of reactivity toward H2 of 1-Et+ and 2-Et+, indicates they are not on the reaction path of the olefin/D2 H/D exchange process. A mechanism with olefin binding to an open site created by CO loss and formation of an Fe-(CH2CHDR) intermediate is indicated. A likely role of a binuclear chelate effect is implicated for the unique S-XXX-S cofactor in the active site of [Fe]H2ase.


Assuntos
Alcenos/química , Materiais Biomiméticos/química , Compostos Ferrosos/química , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Alcenos/metabolismo , Materiais Biomiméticos/metabolismo , Deutério , Compostos Ferrosos/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA