Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 39(6): 876-881, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33423836

RESUMO

Rubella, is a contagious disease caused by Rubella virus (RuV) that manifests as fever with skin-rashes in children and adults along with complications in pregnant women. WHO-SEAR has set a target for Rubella elimination by 2023. This is the first report of antigenic characterization and genome sequencing of nine RuVs sampled during 1992, 2007-9, and 2015-17 from four Indian states. Comparative analysis of Indian RuVs (2B) with that of global isolates and vaccine strain RA 27/3 (1a) revealed that the observed mutations in structural proteins have no major impact on the 3D structure, function and antigenicity. Indian RuVs formed three major clusters (Pune-1992, Kannur-2009 and Chitradurg-2007) in genome-based phylogeny of global isolates. Neutralizing antibody titers in a panel of serum samples from measles negative cases were significantly higher to the vaccine strain compared to a wild-type 2B isolate (Kannur) with concordance of 91.9%, thereby substantiating the use of current vaccines.


Assuntos
Vírus da Rubéola/genética , Vírus da Rubéola/imunologia , Rubéola (Sarampo Alemão) , Adulto , Anticorpos Antivirais , Antígenos Virais , Criança , Feminino , Humanos , Índia/epidemiologia , Gravidez , Rubéola (Sarampo Alemão)/epidemiologia , Rubéola (Sarampo Alemão)/prevenção & controle
2.
J Infect ; 80(3): 301-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31958542

RESUMO

OBJECTIVE: To map genomic diversity of Measles virus (MeV) isolates collected during 2009-2017 from ten states of India. METHODS: Genome sequencing of Indian isolates and comparative genomics with global MeV using phylogeny, population stratification and selection pressure approaches were performed. RESULTS: The first report of complete genome sequences of forty-three Indian MeV isolates belonging to genotypes D4 (eight) and D8 (thirty-five). Three Indian isolates mapped to named strains D4-Enfield, D8-Villupuram and D8-Victoria. Indian D4 isolates deviate from standard genome length due to indels in M-F intergenic region. Estimated nucleotide substitution rates of Indian MeV derived using genome and individual genes are lower than that of global isolates. Phylogeny revealed genotype-based temporal clustering, suggesting existence of two lineages of D4 and three lineages of D8 in India. Absence of spatial clustering suggests role of cross-border travel in MeV transmission. CONCLUSIONS: Evolutionary analyses suggest the need for surveillance of MeV in India, particularly in view of diversified trajectories of D4 and D8 isolates. This study contributes to global measles epidemiology and indicates no major impact on antigenicity in Indian isolates, thereby substantiating the use of current vaccines to meet measles elimination target of 2023 set by World Health Organization for South-East Asia Region.


Assuntos
Vírus do Sarampo , Sarampo , Genômica , Genótipo , Humanos , Índia/epidemiologia , Sarampo/epidemiologia , Vírus do Sarampo/genética , Filogenia , Análise de Sequência de DNA
3.
PeerJ ; 4: e2326, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635316

RESUMO

BACKGROUND: Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae). There are four serotypes of Dengue Virus (DENV-1 to DENV-4), each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. METHODS: Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. RESULTS: DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. DISCUSSION: Complete genome-based analysis revealed that the worldwide population of DENV-2 strains is subdivided into fifteen lineages. The population structure of DENV-2 is spatiotemporal and is shaped by episodic positive selection and recombination. Intra-genotype diversity was observed in four genotypes (Asian/American, Asian I, cosmopolitan and sylvatic). Episodic positive selection on envelope and non-structural genes translates into antigenic diversity and appears to be responsible for emergence of strains/lineages in DENV-2 genotypes. Understanding of the genotype diversity and emerging lineages will be useful to design strategies for epidemiological surveillance and vaccine design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA