Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-6, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35645363

RESUMO

BACKGROUND: Cockayne syndrome (CS) is a rare neurodegenerative disorder characterized by impaired neurological functions, cachectic dwarfism, microcephaly and photosensitivity. Complementation assays identify two groups of this disorder, CS type I (CSA) and CS type II (CSB), caused by mutations in ERCC8 and ERCC6, respectively. OBJECTIVES: This study aimed to investigate the genetic basis of a consanguineous Pakistani family with three affected individuals presenting with typical clinical symptoms of CS. METHODS: We employed whole exome sequencing of the proband and then Sanger sequenced all the family members to confirm its segregation in the family. Different bioinformatics tools were used to predict pathogenicity of this variant. RESULTS: Variants were filtered according to the pedigree structure. We identified a novel homozygous variant (c.202A>T; p.Ile68Phe) in ERCC8 gene in the proband. The variant was found to segregate in the family. CONCLUSIONS: These findings add to the genetic heterogeneity of ERCC8 and expands the mutation spectrum. Also, identification of this variant can facilitate prenatal diagnosis/genetic counselling set ups in Pakistan where this disease largely remains undiagnosed.

2.
J Clin Neurosci ; 94: 8-12, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34863467

RESUMO

GPR56 gene is best known for its pivotal role in cerebral cortical development. Mutations inGPR56give rise to cobblestone-like brain malformation, white matter changes and cerebellar dysplasia. This study aimed to identify causative variant in a consanguineous family having five individuals affected with developmental delay, mild to severe intellectual disability, speech impairment, strabismus and seizures. Whole exome sequencing was performed to identify mutation in affected individuals. Variants were filtered and further validated by Sanger sequencing and segregation analysis. A novel frameshift variant c.1601dupT leading to p.Ala535GlyfsTer17) was identified in GPR56 gene by whole exome sequencing and subsequent filtering. All five affected individuals were homozygous for the mutant allele while four asymptomatic individuals carried the variant in heterozygous state. Radiological findings of a representative patient presented features of GPR56-associated cobblestone like brain malformation. MRI findings suggested paucity of sulci, dilated ventricular system and brainstem atrophy. The microgyria were observed in a simplified gyral pattern (cobblestone). This single bp insertion, and the consequent frameshift, results in the truncation of GPR56 protein. This could result in a malformed cortex giving the brain a cobblestone like shape. Our study identified a 7th novel frameshift variant from Pakistani population in GPR56 gene, thus broadening mutation spectrum.


Assuntos
Imageamento por Ressonância Magnética , Consanguinidade , Homozigoto , Humanos , Paquistão , Sequenciamento do Exoma
3.
Genes (Basel) ; 12(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440456

RESUMO

Cardiac conduction disease (CCD), which causes altered electrical impulse propagation in the heart, is a life-threatening condition with high morbidity and mortality. It exhibits genetic and clinical heterogeneity with diverse pathomechanisms, but in most cases, it disrupts the synchronous activity of impulse-generating nodes and impulse-conduction underlying the normal heartbeat. In this study, we investigated a consanguineous Pakistani family comprised of four patients with CCD. We applied whole exome sequencing (WES) and co-segregation analysis, which identified a novel homozygous missense mutation (c.1531T>C;(p.Ser511Pro)) in the highly conserved kinase domain of the cardiac troponin I-interacting kinase (TNNI3K) encoding gene. The behaviors of mutant and native TNNI3K were compared by performing all-atom long-term molecular dynamics simulations, which revealed changes at the protein surface and in the hydrogen bond network. Furthermore, intra and intermolecular interaction analyses revealed that p.Ser511Pro causes structural variation in the ATP-binding pocket and the homodimer interface. These findings suggest p.Ser511Pro to be a pathogenic variant. Our study provides insights into how the variant perturbs the TNNI3K structure-function relationship, leading to a disease state. This is the first report of a recessive mutation in TNNI3K and the first mutation in this gene identified in the Pakistani population.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Predisposição Genética para Doença , Proteínas Serina-Treonina Quinases/genética , Troponina I/genética , Adolescente , Adulto , Doença do Sistema de Condução Cardíaco/epidemiologia , Doença do Sistema de Condução Cardíaco/patologia , Criança , Consanguinidade , Feminino , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Paquistão/epidemiologia , Linhagem , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Serina-Treonina Quinases/ultraestrutura , Fatores de Transcrição/genética , Troponina I/ultraestrutura , Sequenciamento do Exoma , Adulto Jovem
4.
Mol Genet Genomic Med ; 8(9): e1408, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32677750

RESUMO

BACKGROUND: Primary microcephaly (MCPH) is a congenital neurodevelopmental disorder manifesting as small brain and intellectual disability. It underlies isolated reduction of the cerebral cortex that is reminiscent of early hominids which makes it suitable model disease to study the hominin-specific volumetric expansion of brain. Mutations in 25 genes have been reported to cause this disorder. Although majority of these genes were discovered in the Pakistani population, still a significant proportion of these families remains uninvestigated. METHODS: We studied a cohort of 32 MCPH families from different regions of Pakistan. For disease gene identification, genome-wide linkage analysis, Sanger sequencing, gene panel, and whole-exome sequencing were performed. RESULTS: By employing these techniques individually or in combination, we were able to discern relevant disease-causing DNA variants. Collectively, 15 novel mutations were observed in five different MCPH genes; ASPM (10), WDR62 (1), CDK5RAP2 (1), STIL (2), and CEP135 (1). In addition, 16 known mutations were also verified. We reviewed the literature and documented the published mutations in six MCPH genes. Intriguingly, our cohort also revealed a recurrent mutation, c.7782_7783delGA;p.(Lys2595Serfs*6), of ASPM reported worldwide. Drawing from this collective data, we propose two founder mutations, ASPM:c.9557C>G;p.(Ser3186*) and CENPJ:c.18delC;p.(Ser7Profs*2), in the Pakistani population. CONCLUSIONS: We discovered novel DNA variants, impairing the function of genes indispensable to build a proper functioning brain. Our study expands the mutational spectra of known MCPH genes and also provides supporting evidence to the pathogenicity of previously reported mutations. These novel DNA variants will be helpful for the clinicians and geneticists for establishing reliable diagnostic strategies for MCPH families.


Assuntos
Loci Gênicos , Microcefalia/genética , Mutação , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Consanguinidade , Feminino , Efeito Fundador , Frequência do Gene , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Microcefalia/patologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Linhagem
5.
J Clin Neurosci ; 67: 19-23, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31281085

RESUMO

Hereditary Spastic paraplegias (HSPs) are heterogeneous group of degenerative disorders characterized by progressive weakness and spasticity of the lower limbs, combined with additional neurological features. This study aimed to identify causative gene variants in two nonrelated consanguineous Pakistani families segregating HSP. Whole exome sequencing (WES) was performed on a total of five individuals from two families including four affected and one phenotypically normal individual. The variants were validated by Sanger sequencing and segregation analysis. In family A, a novel homozygous variant c.604G > A (p.Glu202Lys) was identified in the CYP2U1 gene with clinical symptoms of SPG56 in 3 siblings. Whereas, a previously reported variant c.5769delT (p.Ser1923Argfs*28) in the SPG11 gene was identified in family B manifesting clinical features of SPG11 in 3 affected individuals. Our combined findings add to the clinical and genetic variability associated with CYP2U1 and SPG11 variants highlighting the complexity of HSPs. These findings further emphasize the usefulness of WES as a powerful diagnostic tool.


Assuntos
Família 2 do Citocromo P450/genética , Sequenciamento do Exoma/métodos , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Adulto , Criança , Feminino , Humanos , Masculino , Mutação , Paquistão , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA