Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(8): 3893-3900, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349182

RESUMO

Single-atom catalysts (SACs) present substantial potential in electrocatalytic CO2 reduction reactions; however, inferior accessibility of single-atom sites to CO2 limits the overall CO2RR performances. Herein, we propose to improve the accessibility between In sites and CO2 through the construction of a three-dimensional (3D) porous indium single-atom catalyst (In1/NC-3D). The NaCl template-mediated synthesis strategy generates the unique 3D porous nanostructure of In1/NC-3D. Multiple characterizations validate that In1/NC-3D exhibits increased exposure of active sites and enhanced CO2 transport/adsorption capacity compared to the bulk In1/NC, thus improving accessibility of active sites to CO2. As a result, the In1/NC-3D presents superior CO2RR performance to the bulk In1/NC, with a partial current density of formate of 67.24 mA cm-2 at -1.41 V, relative to a reversible hydrogen electrode (vs RHE). The CO2RR performances with high formate selectivity at a large current density also outperform most reported In-based SACs. Importantly, the In1/NC-3D is demonstrated to maintain an FEformate of >82% at -66.83 mA·cm-2 over 21 h. This work highlights the design of a 3D porous single-atom catalyst for efficient CO2RR, promoting the development of advanced catalysts toward advanced energy conversion.

2.
ACS Nano ; 18(1): 750-760, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150590

RESUMO

Fe-N-C catalyst is one of most promising candidates for oxygen electrocatalysis reaction in zinc-air batteries (ZABs), but achieving sustained high activity is still a challenging issue. Herein, we demonstrate that introducing Mn single atoms into Fe-N-C (Mn1@Fe-N-C/CNTs) enables the realization of highly efficient and durable oxygen electrocatalysis performance and application in ZABs. Multiple characterizations confirm that Mn1@Fe-N-C/CNTs is equipped with Mn-N2O2 and Fe-N4 sites and Fe nanoparticles. The Mn-N2O2 sites not only tune the electron structure of Fe-Nx sites to enhance intrinsic activity, but also scavenge the attack of radicals from Fe-Nx sites for improvement in ORR durability. As a result, Mn1@Fe-N-C/CNTs exhibits enhanced ORR performance to traditional Fe-N-C catalysts with high E1/2 of 0.89 V vs reversible hydrogen electrode (RHE) and maintains ORR activity after 15 000 CV. Impressively, Mn1@Fe-N-C/CNTs also presents excellent OER activity and the difference (ΔE) between E1/2 of ORR and OER potential at 10 mA cm-2 (Ej10) is only 0.59 V, outperforming most reported catalysts. In addition, the maintainable bifunctional activity of Mn1@Fe-N-C/CNTs is demonstrated in ZABs with almost unchanged cycle voltage efficiency up to 200 h. This work highlights the critical role of Mn single atoms in enhancing ORR activity and stability, promoting the development of advanced catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA