Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 107: 108618, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35219164

RESUMO

Ginseng is one of the most widely used herbal remedies for various diseases worldwide. Ginsenoside Rg3 (G-Rg3), the main component of ginseng, possesses several pharmacological properties, including anti-inflammatory, anti-tumor, antioxidant, anti-obesity, and immunomodulatory activities. However, the effect of G-Rg3 on natural killer (NK) cells in humans is not fully understood. Here, we investigated the effect of G-Rg3 on NK cell function and differentiation and elucidated the underlying mechanism. G-Rg3 increased NK cell cytotoxicity and simultaneously increased the expression of NK-activating receptors, NKp44, NKp46, and NKp30. Additionally, G-Rg3 increased the mRNA expression of NK cytolytic molecules, granzyme B and perforin. The expression of CD107a, a marker of NK cell degranulation, also increased in G-Rg3-treated NK cells. We therefore proceeded to identify which MAPK signaling pathway was involved in G-Rg3-mediated cytolytic activity. Treatment with G-Rg3 increased the phosphorylation levels of extracellular signal-regulated kinase (ERK), whereas ERK inhibition eliminated G-Rg3-induced NK cell cytotoxicity, suggesting the involvement of the ERK pathway. G-Rg3 did not affect the rate of differentiation of human cord-blood-derived NK cells; however, it increased the functional maturation of differentiated NK cells and promoted their cytotoxicity. The G-Rg3 isomer, 20(R)-Rg3, effectively activated NK cells via the extracellular signal-regulated kinase (ERK) signaling pathway, whereas 20(S)-Rg3 had no effect on NK cell activity. Altogether, the results demonstrated that 20(R)-Rg3 promoted NK cell activity via activation of the MAPK/ERK pathway, suggesting that 20(R)-Rg3 may be used as an activator of NK cell cytotoxicity for the treatment of diverse types of cancers.


Assuntos
Ginsenosídeos , Panax , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ginsenosídeos/farmacologia , Humanos , Células Matadoras Naturais/metabolismo , Sistema de Sinalização das MAP Quinases , Panax/metabolismo , Transdução de Sinais
2.
Sci Rep ; 7(1): 2623, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572627

RESUMO

Regulation of intracellular Ca2+ signaling is a major determinant of CD8+ T cell responsiveness, but the mechanisms underlying this regulation of Ca2+ levels, especially in naïve CD8+ T cells, are not fully defined. Here, we showed that microRNA-150 (miR-150) controls intracellular Ca2+ levels in naïve CD8+ T cells required for activation by suppressing TMEM20, a negative regulator of Ca2+ extrusion. miR-150 deficiency increased TMEM20 expression, which resulted in increased intracellular Ca2+ levels in naïve CD8+ T cells. The subsequent increase in Ca2+ levels induced expression of anergy-inducing genes, such as Cbl-b, Egr2, and p27, through activation of NFAT1, as well as reduced cell proliferation, cytokine production, and the antitumor activity of CD8+ T cells upon antigenic stimulation. The anergy-promoting molecular milieu and function induced by miR-150 deficiency were rescued by reinstatement of miR-150. Additionally, knockdown of TMEM20 in miR-150-deficient naïve CD8+ T cells reduced intracellular Ca2+ levels. Our findings revealed that miR-150 play essential roles in controlling intracellular Ca2+ level and activation in naïve CD8+ T cells, which suggest a mechanism to overcome anergy induction by the regulation of intracellular Ca2+ levels.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , MicroRNAs/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Proliferação de Células , Anergia Clonal , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição NFATC/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA