Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(33): 15311-15322, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39115455

RESUMO

The widespread use and contamination of natural sources by new-generation drugs and pesticides have enhanced concern about environmental pollution. Understanding the above importance, we developed a superhydrophobic metal-organic framework (MOF) (SHMOF': [Zr6O4(OH)4(BDC-NH-CO-R)2.4(BDC-NH2)0.6(CF3COO)6]·2.5H2O·4DMF) for ecological remediation via adsorption-based separation of hydrophobic drugs (flurbiprofen) and pesticides (fluazinam). The newly developed SHMOF' has a high adsorption capacity toward flurbiprofen and fluazinam, i.e., 435 and 575 mg/g, respectively. The adsorption equilibrium time of the MOF is very short (15 and 10 min for flurbiprofen and fluazinam, respectively). The outstanding superhydrophobic nature of the MOF was employed to separate flurbiprofen and fluazinam from highly alkaline and acidic media and environmental water samples. The SHMOF' has excellent selectivity toward the adsorption-based separation of flurbiprofen and fluazinam in the coexistence of common analytes. Again, we developed a polypropylene (PP) fabric-based composite of SHMOF' (SHMOF'@PP) to separate the hydrophobic targeted analytes by using a zero-energy-consuming filtration-based separation method, which made this separation process cost-efficient and user-friendly. Moreover, Ag nanoparticles were doped to the superhydrophobic composite. The Ag-doped reusable SHMOF'@PP@Ag composite exhibited excellent bacterial antiadhesion and antibacterial properties toward Staphylococcus aureus bacteria.


Assuntos
Antibacterianos , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas , Praguicidas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Praguicidas/isolamento & purificação , Praguicidas/química , Praguicidas/farmacologia , Adsorção , Staphylococcus aureus/efeitos dos fármacos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Flurbiprofeno/química , Flurbiprofeno/farmacologia , Flurbiprofeno/isolamento & purificação , Estrutura Molecular
2.
Inorg Chem ; 63(10): 4502-4510, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408375

RESUMO

A fast, sensitive, selective, and biocompatible dual sensor of an antineoplastic medication (methotrexate) and a neurotransmitter (adrenaline) is still being searched by present-day scientists. To overcome this issue, we have designed a functionalized, robust, bio-friendly luminescent MOF for the sensitive, selective, and rapid monitoring of methotrexate and adrenaline. This probe is the first ever reported MOF-based fluorescence sensor of methotrexate and second only for adrenaline. This fluorescence probe has a very low limit of detection (LOD) of 0.34 and 11.2 nM for adrenaline and methotrexate, respectively. The sensor can detect both the targeted analytes rapidly within 5 s. It can also detect adrenaline and methotrexate from human blood serum and urine accurately and precisely. This reusable sensor is equally efficient in detecting methotrexate from environmental water specimens. Biocompatible, user-friendly, and inexpensive chitosan@MOF@cotton composites were fabricated for the detection of adrenaline and methotrexate from the nanomolar to the micromolar range by the naked eye under a fluorescence lamp. This probe displayed high reproducibility, precision, and accuracy in sensing methotrexate and adrenaline. Fluorescence resonance energy transfer (FRET) and the inner filter effect (IFE) are the possible mechanisms for adrenaline and methotrexate sensing, respectively. The possible mechanism was supported by using required instrumental techniques and theoretical simulations.


Assuntos
Antineoplásicos , Metotrexato , Humanos , Água , Reprodutibilidade dos Testes , Epinefrina , Neurotransmissores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA