Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1268448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780518

RESUMO

Ubiquitination is a specific protein degradation and reversible post-translational modification process that can be reversed by deubiquitinase (DUBs). DUBs can hydrolyze and release ubiquitin in the substrate protein so that the substrate can avoid degradation or change its activity, and it has an impact on plant growth and development, cell cycle, abiotic stress response, and other biological processes. Transcript sequences of potato varieties "DM1-3", "Atlantic" and "Cooperation-88" downloaded from Potato Genome Resources were used for genome-wide identification of the DUB gene family using Hidden Markov Models and verified in the NCBI CD-Search tool. The characteristics of DUB genes from different potato varieties were analyzed including subcellular localization, gene structural motifs, phylogenetic tree, and sequence homology. Polyethylene glycol 6000 (PEG6000) induced drought stress transcriptome analysis was performed on the "Atlantic", and differentially expressed genes were screened, with emphasis on the characterization of deubiquitinase. DUB genes have a complex gene structure, often with a large number of exons and alternative splicing. Their promoters contain abundant abiotic stress-responsive elements, such as 425 MYC, 325 ABRE, and 320 MYB. There are also a large number of orthologous genes in the DUBs of the three potato varieties, and these genes are often clustered in similar regions on the genome. We performed transcriptome sequencing of the potato under PEG-induced drought stress and analyzed it for the first time using the Atlantic as a reference genome. We identified a total of 6067 down-regulated differentially expressed genes (DEGs) and 4950 up-regulated DEGs under PEG-induced drought stress. We screened the expression of DUBs and observed that 120 DUBs were up-regulated where most of them functioned in the nucleus, and the interacting proteins of DUBs were also localized in the nucleus. We have comprehensively identified and analyzed potato DUBs, and the accurately aligned transcriptome data which will further deepen the understanding of DUBs involved in the regulation of osmotic stress.

2.
Breed Sci ; 72(4): 316-325, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36699822

RESUMO

sd1-d has been utilized to develop short-culmed indica varieties adaptable to higher fertilizer-applications. Its tall alleles SD1-in and SD1-ja are harbored in indica and japonica subspecies, respectively. SD1-in possesses a higher effect on elongating culm than SD1-ja. The sd1-d of indica IR36 was substituted with SD1-in or SD1-ja through recurrent backcrossing with IR36, and two tall isogenic lines ("5867-36" and "Koshi-36") were developed. IR36, 5867-36 and Koshi-36 were grown in a paddy field, and the effects of sd1-d, SD1-in and SD1-ja on morphological characteristics concerning dry-matter production and photosynthesis were compared mutually. sd1-d diminished dry weight of total brown rice/m2 and total dry matter weights, but enhanced harvest indexes, compared with SD1-in. In IR36, shorter lengths of the first (flag) to third leaves, and more panicle-bearing stems, caused by sd1-d, compared with SD1-in-carrying 5867-36, and erect first leaves, not caused by sd1-d, could construct the canopy structure appropriate for obtaining a high rate of photosynthesis at an optimum LAI. Koshi-36 could be used for a mid-mother line to develop indica varieties adaptable to middle and low fertilizer-applications, due to higher effect of SD1-ja on yielding ability, compared with that of sd1-d, no breaking-type lodging, and resistances to diseases and pests.

3.
Breed Sci ; 71(3): 334-343, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34776740

RESUMO

sd1-d originating from 'Dee-geo-woo-gen' has been utilized to develop short-culmed indica varieties adaptable to higher fertilizer-application. Its tall alleles SD1-in and SD1-ja are harbored in indica and japonica subspecies, respectively. The sd1-d of indica IR36 was substituted with SD1-in or SD1-ja by recurrent backcrossing with IR36, and two tall isogenic lines ("5867-36" and "Koshi-36") were developed. IR36, 5867-36 and Koshi-36 were grown in a paddy field in three years, and yield and related traits were measured, the effects of SD1-in and SD1-ja on yielding ability and related characteristics were examined on the genetic background of IR 36. SD1-in decreased panicle number per m2 but increased spikelet number per panicle, ripened-grain percentage and 1000-grain weight, compared with sd1-d, resulting in the increase of yield. The increase of 1000-grain weight by SD1-in, caused by the increases of length, width and thickness of grain, was due to the increases of the length and width of lemma. SD1-ja did not significantly affect yield, mainly because the decrease of panicle number per m2 was compensated by the enlarged 1000-grain weight owing to the increase of lemma length. Serious lodging was observed in long-culmed 5867-36, suggesting that sd1-d is indispensable for indica breeding programs.

4.
Hereditas ; 156: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31889942

RESUMO

BACKGROUND: Heading time is an important trait for regional and seasonal adaptabilities in rice, and is controlled by genetic factors in relation with environmental factors, mainly day length and temperature. The following genes controlling heading were examined for their responses to six different environmental conditions involving different day lengths using five early near-isogenic lines (NILs) of T65-R and three late NILs of T65wx: two earliness genes, Ef1 and Efx controlling basic vegetative phase (BVG), and m-Ef1, the enhancer to the former gene; and two lateness genes, Se1-pat(t) and se-pat controlling photo-sensitivity and BVG, respectively. T65-R and T65-T were different accessions of Taichung 65. T65wx is a NIL of T65-T carrying wx. RESULTS: The five early NILs of T65-R were in the order of ER50 (Ef1, Efx, m-Ef1) < ER40 (Ef1, m-Ef1) ≤ ER20 (Ef1, Efx) < ER1 (Ef1) ≤ ER21 (Efx) < T65-R regarding days to heading (DTH) under two spring-sowing and one summer-sowing paddy field (PF) conditions. The three late NILs of T65wx were in the order of LF3 (Se1-pat(t)) ≤ LF2 (Se1-pat(t), se-pat) ≤ T65wx < LF1 (se-pat) under two short-day conditions (10-h photoperiod condition with artificial-light and natural short-day condition from autumn to winter). The NILs and T65wx were in the order of T65wx < LF3 < LF1 < LF2 under the two spring-sowing PF (long day) conditions. T65-R (Ac-ef1) was 2.8 or 5.1 days earlier in DTH than T65-T (ac-ef1) under the two spring-sowing PF conditions. However, T65-R was 19 and 10 days earlier than T65-T under the two short-day conditions. CONCLUSIONS: Earliness gene(s) and their combinations reduced DTH regardless of photoperiod lengths. Se1-pat(t) increased DTH under long-day conditions but decreased it under short-day conditions, while se-pat elongated DTH under both short-day and long-day conditions indicating that se-pat is responsible for BVG. The se-pat increased DTH by adding its effect over that of Se1-pat(t) under long-day conditions. However, this increasing effect of DTH by se-pat was almost completely masked when it coexisted with Se1-pat(t) under the short-day conditions. Notably, the response of Ac-ef1 to day length was found to delay heading under the short-day conditions.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Oryza/fisiologia , Oryza/efeitos da radiação , Fotoperíodo , Desenvolvimento Vegetal/genética , Meio Ambiente , Especificidade de Órgãos/genética , Oryza/crescimento & desenvolvimento , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA