Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677545

RESUMO

In the present scenario, the research is now being focused on the naturally occurring polymers that can gradually replace the existing synthetic polymers for the development of bio composites having applications in medical surgeries and human implants. With promising mechanical properties and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio material. In order to examine the applicability of PLA in human implants, the current article sheds light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical properties. In the latter half, various processes used for the fabrication of biomaterials are discussed in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human implants) are represented with respective advantages in the sphere of biomaterials.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Poliésteres , Polímeros , Alicerces Teciduais
2.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365657

RESUMO

In the current work, europium-doped barium titanate particles were used as filler material and polystyrene was used as a matrix to fabricate Ba1-3x/2EuxTiO3/PS polymer nanocomposites with x = 0, 0.005, 0.015 and 0.025. A solid-state reaction was used to synthesize filler particles and the solvent evaporation method was used to form polymer nanocomposites. The effects of ultrasonic treatment were also studied in the formation of nanocomposite materials. The quantitative and qualitative studies were conducted using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-Vis) characterization techniques. The XRD data and FTIR data confirm the incorporation of filler particles in the polymer matrix. FE-SEM data confirms that the particles are in the nanophase. The optical band gap was directly affected by the filler particles and it started to reduce as Eu concentration started to increase.

3.
Polymers (Basel) ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808652

RESUMO

Based on the criteria importance through inter-criteria correlation (CRITIC) and the multi-attributive border approximation area comparison (MABAC), a decision-making algorithm was developed to select the optimal biocomposite material according to several conflicting attributes. Poly(lactic acid) (PLA)-based binary biocomposites containing wood waste and ternary biocomposites containing wood waste/rice husk with an overall additive content of 0, 2.5, 5, 7.5 and 10 wt.% were manufactured and evaluated for physicomechanical and wear properties. For the algorithm, the following performance attributes were considered through testing: the evaluated physical (density, water absorption), mechanical (tensile, flexural, compressive and impact) and sliding wear properties. The water absorption and strength properties were found to be the highest for unfilled PLA, while modulus performance remained the highest for 10 wt.% rice husk/wood-waste-added PLA biocomposites. The density of PLA biocomposites increased as rice husk increased, while it decreased as wood waste increased. The lowest and highest density values were recorded for 10 wt.% wood waste and rice husk/wood-waste-containing PLA biocomposites, respectively. The lowest wear was exhibited by the 5 wt.% rice husk/wood-waste-loaded PLA biocomposite. The experimental results were composition dependent and devoid of any discernible trend. Consequently, prioritizing the performance of PLA biocomposites to choose the best one among a collection of alternatives became challenging. Therefore, a decision-making algorithm, called CRITIC-MABAC, was used to select the optimal composition. The importance of attributes was determined by assigning weight using the CRITIC method, while the MABAC method was employed to assess the complete ranking of the biocomposites. The results achieved from the hybrid CRITIC-MABAC approach demonstrated that the 7.5 wt.% wood-waste-added PLA biocomposite exhibited the optimal physicomechanical and wear properties.

4.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683903

RESUMO

In our study, the effects of wood waste content (0, 2.5, 5, 7.5, and 10 wt.%) on thermal and dry sliding wear properties of poly(lactic acid) (PLA) biocomposites were investigated. The wear of developed composites was examined under dry contact conditions at different operating parameters, such as sliding velocity (1 m/s, 2 m/s, and 3 m/s) and normal load (10 N, 20 N, and 30 N) at a fixed sliding distance of 2000 m. Thermogravimetric analysis demonstrated that the inclusion of wood waste decreased the thermal stability of PLA biocomposites. The experimental results indicate that wear of biocomposites increased with a rise in load and sliding velocity. There was a 26-38% reduction in wear compared with pure PLA when 2.5 wt.% wood waste was added to composites. The Taguchi method with L25 orthogonal array was used to analyze the sliding wear behavior of the developed biocomposites. The results indicate that the wood waste content with 46.82% contribution emerged as the most crucial parameter affecting the wear of PLA biocomposites. The worn surfaces of the biocomposites were examined by scanning electron microscopy to study possible wear mechanisms and correlate them with the obtained wear results.

5.
Materials (Basel) ; 15(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35744371

RESUMO

Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties' comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.

6.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406199

RESUMO

The reinforcement of natural fibre and fillers in polymer resin is the latest trend followed by research groups and industries for the development of sustainable composites. Basalt fibre and waste marble powder are naturally occurring substances used to enhanced polymer properties. The present research examined the effect of both basalt fibre and waste marble powder in epoxy resin. The hand lay-up method was employed to fabricate the composite and test for mechanical and wear behaviour. The tensile, flexural, and impact energy were enhanced up to 7.5 wt. % of WMP, and the Vickers hardness of epoxy enhanced every state of reinforcement of WMP. The specific wear rate was observed to be increased with the addition of WMP until 7.5 wt. %. Scanning electron microscopy was performed to examine the nature of fractured surface wear phenomena.

7.
Polymers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685366

RESUMO

In polymer composites, synthetic fibers are primarily used as a chief reinforcing material, with a wide range of applications, and are therefore essential to study. In the present work, we carried out the erosive wear of natural and synthetic fiber-based polymer composites. Glass fiber with jute and Grewia optiva fiber was reinforced in three different polymer resins: epoxy, vinyl ester and polyester. The hand lay-up method was used for the fabrication of composites. L16 orthogonal array of Taguchi method used to identify the most significant parameters (impact velocity, fiber content, and impingement angle) in the analysis of erosive wear. ANOVA analysis revealed that the most influential parameter was in the erosive wear analysis was impact velocity followed by fiber content and impingement angle. It was also observed that polyester-based composites exhibited the highest erosive wear followed by vinyl ester-based composites, and epoxy-based composites showed the lowest erosive wear. From the present study, it may be attributed that the low hardness of the polyester resulting in low resistance against the impact of erodent particles. The SEM analysis furthermore illustrates the mechanism took place during the wear examination of all three types of composites at highest fiber loading. A thorough assessment uncovers brittle fractures in certain regions, implying that a marginal amount of impact forces was also acting on the fabricated samples. The developed fiber-reinforced polymer sandwich composite materials possess excellent biocompatibility, desirable promising properties for prosthetic, orthopaedic, and bone-fracture implant uses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA