Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 244(1): 74-90, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39101264

RESUMO

In severely phosphorus (P)-impoverished environments, plants have evolved to use P very efficiently. Yet, it is unclear how P allocation in leaves contributes to their photosynthetic P-use efficiency (PPUE) and position along the leaf economics spectrum (LES). We address this question in 10 species of Banksia and Hakea, two highly P-efficient Proteaceae genera. We characterised traits in leaves of Banksia and Hakea associated with the LES: leaf mass per area, light-saturated photosynthetic rates, P and nitrogen concentrations, and PPUE. We also determined leaf P partitioning to five biochemical fractions (lipid, nucleic acid, metabolite, inorganic and residual P) and their possible association with the LES. For both genera, PPUE was negatively correlated with fractional allocation of P to lipids, but positively correlated with that to metabolites. For Banksia only, PPUE was negatively correlated with residual P, highlighting a strategy contrasting to that of Hakea. Phosphorus-allocation patterns significantly explained PPUE but were not linked to the resource acquisition vs resource conservation gradient defined by the LES. We conclude that distinct P-allocation patterns enable species from different genera to achieve high PPUE and discuss the implications of different P investments. We surmise that different LES axes representing different ecological strategies coexist in extremely P-impoverished environments.


Assuntos
Fósforo , Fotossíntese , Folhas de Planta , Proteaceae , Fósforo/metabolismo , Folhas de Planta/metabolismo , Proteaceae/metabolismo , Proteaceae/fisiologia , Especificidade da Espécie , Nitrogênio/metabolismo
2.
Plant Cell Environ ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136390

RESUMO

Heavy and costly use of phosphorus (P) fertiliser is often needed to achieve high crop yields, but only a small amount of applied P fertiliser is available to most crop plants. Hakea prostrata (Proteaceae) is endemic to the P-impoverished landscape of southwest Australia and has several P-saving traits. We identified 16 members of the Phosphate Transporter 1 (PHT1) gene family (HpPHT1;1-HpPHT1;12d) in a long-read genome assembly of H. prostrata. Based on phylogenetics, sequence structure and expression patterns, we classified HpPHT1;1 as potentially involved in Pi uptake from soil and HpPHT1;8 and HpPHT1;9 as potentially involved in Pi uptake and root-to-shoot translocation. Three genes, HpPHT1;4, HpPHT1;6 and HpPHT1;8, lacked regulatory PHR1-binding sites (P1BS) in the promoter regions. Available expression data for HpPHT1;6 and HpPHT1;8 indicated they are not responsive to changes in P supply, potentially contributing to the high P sensitivity of H. prostrata. We also discovered a Proteaceae-specific clade of closely-spaced PHT1 genes that lacked conserved genetic architecture among genera, indicating an evolutionary hot spot within the genome. Overall, the genome assembly of H. prostrata provides a much-needed foundation for understanding the genetic mechanisms of novel adaptations to low P soils in southwest Australian plants.

3.
Plant Cell Environ ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072729

RESUMO

Numerous phosphorus (P)-acquisition and -utilisation strategies have evolved in plants growing in severely P-impoverished environments. Although these strategies have been well characterised for certain taxa, like Proteaceae, P-poor habitats are characterised by a high biodiversity, and we know little about how species in other families cope with P scarcity. We compared the P-acquisition and leaf P-allocation strategies of Fabaceae and Myrtaceae with those of Proteaceae growing in the same severely P-impoverished habitat. Myrtaceae and Fabaceae exhibited multiple P-acquisition strategies: P-mining by carboxylates or phosphatases, P uptake facilitated by carboxylate-releasing neighbours, and dependence on the elevated soil P availability after fire. Surprisingly, not all species showed high photosynthetic P-use efficiency (PPUE). Highly P-efficient species showed positive correlations between PPUE and the proportion of metabolite P (enzyme substrates), and negative correlations between PPUE and phospholipids (cellular membranes) and nucleic acid P (mostly ribosomal RNA), while we found no correlations in less P-efficient species. Overall, we found that Myrtaceae and Fabaceae used a wider range of strategies than Proteaceae to cope with P scarcity, at both the rhizosphere and leaf level. This knowledge is pivotal to better understand the mechanisms underlying plant survival in severely nutrient-impoverished biodiverse ecosystems.

4.
Plant J ; 119(4): 1800-1815, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923138

RESUMO

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.


Assuntos
Lignina , Raízes de Plantas , Estresse Salino , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Lignina/metabolismo , Tolerância ao Sal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Parede Celular/metabolismo , Adaptação Fisiológica , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Salinidade , Genótipo , Sódio/metabolismo
5.
Ann Bot ; 133(3): 483-494, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198749

RESUMO

BACKGROUND AND AIMS: Soils in south-western Australia are severely phosphorus (P) impoverished, and plants in this region have evolved a variety of P-acquisition strategies. Phosphorus acquisition by Adenanthos cygnorum (Proteaceae) is facilitated by P-mobilizing neighbours which allows it to extend its range of habitats. However, we do not know if other Adenanthos species also exhibit a strategy based on facilitation for P acquisition in P-impoverished environments. METHODS: We collected leaf and soil samples of Adenanthosbarbiger, A. cuneatus, A.meisneri,A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) growing in their natural habitats at different locations within the severely P-limited megadiverse environment of south-western Australia. Hydroponic experiments were conducted to collect the carboxylates exuded by cluster roots. Pot experiments in soil were carried out to measure rhizosheath phosphatase activity. KEY RESULTS: We found no evidence for facilitation of P uptake in any of the studied Adenanthos species. Like most Proteaceae, A. cuneatus, A. meisneri, A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) expressed P-mining strategies, including the formation of cluster roots. Cluster roots of A. obovatus were less effective than those of the other four Adenanthos species. In contrast to what is known for most Proteaceae, we found no cluster roots for A. barbiger. This species probably expressed a post-fire P-acquisition strategy. All Adenanthos species used P highly efficiently for photosynthesis, like other Proteaceae in similar natural habitats. CONCLUSIONS: Adenanthos is the first genus of Proteaceae found to express multiple P-acquisition strategies. The diversity of P-acquisition strategies in these Proteaceae, coupled with similarly diverse strategies in Fabaceae and Myrtaceae, demonstrates that caution is needed in making family- or genus-wide extrapolations about the strategies exhibited in severely P-impoverished megadiverse ecosystems.


Assuntos
Fósforo , Proteaceae , Fósforo/análise , Ecossistema , Austrália Ocidental , Raízes de Plantas/química , Solo
6.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105548

RESUMO

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Assuntos
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiologia , Fósforo/metabolismo , Oomicetos/fisiologia , Oomicetos/patogenicidade , Eucalyptus/microbiologia , Eucalyptus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/microbiologia , Simbiose/fisiologia , Especificidade da Espécie , Meio Ambiente
7.
Sci Total Environ ; 901: 166395, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37597552

RESUMO

South-western Australia is a global biodiversity hotspot and has some of the oldest and most phosphorus (P)-impoverished soils in the world. Proteaceae is one of the dominant P-efficient plant families there, but it is unknown how leaf P concentrations and foliar P allocation of Proteaceae and coexisting dominant plant families vary between seasons and habitats. To investigate this, we selected 18 species from Proteaceae, Myrtaceae and Fabaceae, six from each family, in two habitats from Alison Baird Reserve (32°1'19''S 15°58'52''E) in Western Australia. Total leaf P and nitrogen (N) concentrations, leaf mass per area, photosynthetic rate, pre-dawn leaf water potential and foliar P fractions were determined for each species both at the end of summer (March 2019 and early April 2020) and at the end of winter (September 2019). Soil P availability was also determined for each site. This is the very first study that focused on seasonal changes of foliar P fractions from different P-impoverished environments in three plant families. However, contrary to our expectation, we found little evidence for convergence of foliar P allocation within family, season or habitat. Each species exhibited a specific species-dependent pattern of foliar P allocation, and many species showed differences between seasons. Native plants in south-western Australia converged on a high photosynthetic P-use efficiency, but each species showed its own unique way associated with that outcome.

8.
New Phytol ; 237(4): 1122-1135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328763

RESUMO

Leaf phosphorus (P) comprises four major fractions: inorganic phosphate (Pi ), nucleic acids, phospholipids, P-containing metabolites and a residual fraction. In this review paper, we investigated whether allocation of P fractions varies among groups of terrestrial vascular plants, and is indicative of a species' strategy to use P efficiently. We found that as leaf total P concentration increases, the Pi fraction increases the most, without a plateau, while other fractions plateau. Variability of the concentrations of leaf P fractions is greatest among families > species(family) > regions > plant life forms. The percentage of total P allocated to nucleic acid-P (20-35%) and lipid-P (14-34%) varies less among families/species. High photosynthetic P-use efficiency is associated with low concentrations of all P fractions, and preferential allocation of P to metabolite-P and mesophyll cells. Sequential resorption of P from senescing leaves starts with Pi , followed by metabolite-P, and then other organic P fractions. Allocation of P to leaf P fractions varies with season. Leaf phytate concentrations vary considerably among species, associated with variation in photosynthesis and defence. Plasticity of P allocation to its fractions is important for acclimation to low soil P availability, and species-specific P allocation is needed for co-occurrence with other species.


Assuntos
Fósforo , Folhas de Planta , Fósforo/metabolismo , Folhas de Planta/metabolismo , Células do Mesofilo/metabolismo , Fosfatos/metabolismo , Solo , Fotossíntese
9.
Physiol Plant ; 174(5): e13765, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36281836

RESUMO

Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.


Assuntos
Populus , Populus/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Meristema , Raízes de Plantas/metabolismo , Estresse Salino , Água/metabolismo
10.
Funct Plant Biol ; 48(2): 218-230, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099325

RESUMO

Hakea prostrata R.Br. (Proteaceae) shows a 'delayed greening' strategy of leaf development characterised by reddish young leaves that become green as they mature. This trait may contribute to efficient use of phosphorus (P) during leaf development by first investing P in the development of leaf structure followed by maturation of the photosynthetic machinery. In this study, we investigated the properties of delayed greening in a highly P-efficient species to enhance our understanding of the ecological significance of this trait as a nutrient-saving and photoprotective strategy. In glasshouse-grown plants, we assessed foliar pigments, fatty acids and nutrient composition across five leaf developmental stages. Young leaves had higher concentrations of anthocyanin, P, nitrogen (N), copper (Cu), xanthophyll-cycle pigments and saturated fatty acids than mature leaves. As leaves developed, the concentration of anthocyanins decreased, whereas that of chlorophyll and the double bond index of fatty acids increased. In mature leaves, ~60% of the fatty acids was α-linolenic acid (C18:3 n-3). Mature leaves also had higher concentrations of aluminium (Al), calcium (Ca) and manganese (Mn) than young leaves. We conclude that delayed greening in H. prostrata is a strategy that saves P as well as N and Cu through sequential allocation of these resources, first to cell production and structural development, and then to supplement chloroplast development. This strategy also protects young leaves against photodamage and oxidative stress during leaf expansion under high-light conditions.


Assuntos
Proteaceae , Nutrientes , Fósforo , Fotossíntese , Folhas de Planta
11.
J Exp Bot ; 72(4): 1490-1505, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170269

RESUMO

Very few of the >650 Proteaceae species in south-western Australia cope with the high calcium (Ca) levels in young, calcareous soils (soil indifferent); most are Ca sensitive and occur on nutrient-impoverished, acidic soils (calcifuge). We assessed possible control points for Ca transport across roots of two soil-indifferent (Hakea prostrata and Banksia prionotes) and two calcifuge (H. incrassata and B. menziesii) Proteaceae. Using quantitative X-ray microanalysis, we investigated cell-specific elemental Ca concentrations at two positions behind the apex in relation to development of apoplastic barriers in roots of plants grown in nutrient solution with low or high Ca supply. In H. prostrata, Ca accumulated in outer cortical cells at 20 mm behind the apex, but [Ca] was low in other cell types. In H. incrassata, [Ca] was low in all cells. Accumulation of Ca in roots of H. prostrata corresponded to development of apoplastic barriers in the endodermis. We found similar [Ca] profiles in roots and similar [Ca] in leaves of two contrasting Banksia species. Soil-indifferent Hakea and Banksia species show different strategies to inhabit calcareous soils: H. prostrata intercepts Ca in roots, reducing transport to shoots, whereas B. prionotes allocates Ca to specific leaf cells.


Assuntos
Proteaceae , Fósforo , Raízes de Plantas/química , Solo , Austrália Ocidental
12.
New Phytol ; 228(3): 869-883, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726881

RESUMO

Endemism and rarity have long intrigued scientists. We focused on a rare endemic and critically-endangered species in a global biodiversity hotspot, Grevillea thelemanniana (Proteaceae). We carried out plant and soil analyses of four Proteaceae, including G. thelemanniana, and combined these with glasshouse studies. The analyses related to hydrology and plant water relations as well as soil nutrient concentrations and plant nutrition, with an emphasis on sodium (Na) and calcium (Ca). The local hydrology and matching plant traits related to water relations partially accounted for the distribution of the four Proteaceae. What determined the rarity of G. thelemanniana, however, was its accumulation of Ca. Despite much higher total Ca concentrations in the leaves of the rare G. thelemanniana than in the common Proteaceae, very few Ca crystals were detected in epidermal or mesophyll cells. Instead of crystals, G. thelemanniana epidermal cell vacuoles contained exceptionally high concentrations of noncrystalline Ca. Calcium ameliorated the negative effects of Na on the very salt-sensitive G. thelemanniana. Most importantly, G. thelemanniana required high concentrations of Ca to balance a massively accumulated feeding-deterrent carboxylate, trans-aconitate. This is the first example of a calcicole species accumulating and using Ca to balance accumulation of an antimetabolite.


Assuntos
Proteaceae , Cálcio , Células do Mesofilo , Folhas de Planta , Solo
13.
J Exp Bot ; 71(15): 4452-4468, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32026944

RESUMO

Water and nitrogen availability limit crop productivity globally more than most other environmental factors. Plant availability of macronutrients such as nitrate is, to a large extent, regulated by the amount of water available in the soil, and, during drought episodes, crops can become simultaneously water and nitrogen limited. In this review, we explore the intricate relationship between water and nitrogen transport in plants, from transpiration-driven mass flow in the soil to uptake by roots via membrane transporters and channels and transport to aerial organs. We discuss the roles of root architecture and of suberized hydrophobic root barriers governing apoplastic water and nitrogen movement into the vascular system. We also highlight the need to identify the signalling cascades regulating water and nitrogen transport, as well as the need for targeted physiological analyses of plant traits influencing water and nitrogen uptake. We further advocate for incorporation of new phenotyping technologies, breeding strategies, and agronomic practices to improve crop yield in water- and nitrogen-limited production systems.


Assuntos
Nitrogênio , Água , Transporte Biológico , Melhoramento Vegetal , Raízes de Plantas
14.
Plant Cell Environ ; 43(2): 344-357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31762057

RESUMO

Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/metabolismo , Lipídeos/farmacologia , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Aquaporinas/metabolismo , Transporte Biológico , Hordeum/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Prolina/metabolismo , Transcriptoma , Água/metabolismo
15.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817232

RESUMO

NAC (NAM (no apical meristem), ATAF1/2, and CUC2 (cup-shaped cotyledon)) proteins are one of the largest families of plant-specific transcription factors, and this family is present in a wide range of land plants. Here, we have investigated the role of ANAC046 in the regulation of suberin biosynthesis and deposition in Arabidopsis. Subcellular localization and transcriptional activity assays showed that ANAC046 localizes in the nucleus, where it functions as a transcription activator. Analysis of the PANAC046:GUS lines revealed that ANAC046 is mainly expressed in the root endodermis and periderm, and is also induced in leaves by wounding. The transgenic lines overexpressing ANAC046 exhibited defective surfaces on the aerial plant parts compared to the wild-type (WT) as characterized by increased permeability for Toluidine blue stain and greater chlorophyll leaching. Quantitative RT-PCR analysis showed that the expression of suberin biosynthesis genes was significantly higher in the roots and leaves of overexpression lines compared to the WT. The biochemical analysis of leaf cuticular waxes showed that the overexpression lines accumulated 30% more waxes than the WT. Concurrently, overexpression lines also deposited almost twice the amount of suberin content in their roots compared with the WT. Taken together, these results showed that ANAC046 is an important transcription factor that promotes suberin biosynthesis in Arabidopsis thaliana roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lipídeos/biossíntese , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Ceras/metabolismo
16.
New Phytol ; 221(1): 180-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055115

RESUMO

Barley (Hordeum vulgare) is more drought tolerant than other cereals, thus making it an excellent model for the study of the chemical, transcriptomic and physiological effects of water deficit. Roots are the first organ to sense soil water deficit. Therefore, we studied the response of barley seminal roots to different water potentials induced by polyethylene glycol (PEG) 8000. We investigated changes in anatomical parameters by histochemistry and microscopy, quantitative and qualitative changes in suberin composition by analytical chemistry, transcript changes by RNA-sequencing (RNA-Seq), and the radial water and solute movement of roots using a root pressure probe. In response to osmotic stress, genes in the suberin biosynthesis pathway were upregulated that correlated with increased suberin amounts in the endodermis and an overall reduction in hydraulic conductivity (Lpr ). In parallel, transcriptomic data indicated no or only weak effects of osmotic stress on aquaporin expression. These results indicate that osmotic stress enhances cell wall suberization and markedly reduces Lpr of the apoplastic pathway, whereas Lpr of the cell-to-cell pathway is not altered. Thus, the sealed apoplast markedly reduces the uncontrolled backflow of water from the root to the medium, whilst keeping constant water flow through the highly regulated cell-to-cell path.


Assuntos
Hordeum/fisiologia , Pressão Osmótica/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Secas , Perfilação da Expressão Gênica , Hordeum/química , Hordeum/efeitos dos fármacos , Lipídeos/análise , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Polietilenoglicóis/farmacologia , Análise de Sequência de RNA
17.
New Phytol ; 219(2): 518-529, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29756639

RESUMO

Root foraging and root physiology such as exudation of carboxylates into the rhizosphere are important strategies for plant phosphorus (P) acquisition. We used 100 chickpea (Cicer arietinum) genotypes with diverse genetic backgrounds to study the relative roles of root morphology and physiology in P acquisition. Plants were grown in pots in a low-P sterilized river sand supplied with 10 µg P g-1 soil as FePO4 , a poorly soluble form of P. There was a large genotypic variation in root morphology (total root length, root surface area, mean root diameter, specific root length and root hair length), and root physiology (rhizosheath pH, carboxylates and acid phosphatase activity). Shoot P content was correlated with total root length, root surface area and total carboxylates per plant, particularly malonate. A positive correlation was found between mature leaf manganese (Mn) concentration and carboxylate amount in rhizosheath relative to root DW. This is the first study to demonstrate that the mature leaf Mn concentration can be used as an easily measurable proxy for the assessment of belowground carboxylate-releasing processes in a range of chickpea genotypes grown under low-P, and therefore offers an important breeding trait, with potential application in other crops.


Assuntos
Cicer/metabolismo , Manganês/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Fosfatase Ácida/metabolismo , Biomassa , Ácidos Carboxílicos/metabolismo , Cicer/genética , Genótipo , Concentração de Íons de Hidrogênio , Lipídeos , Fósforo/farmacologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Análise de Componente Principal , Característica Quantitativa Herdável , Rizosfera
18.
Front Plant Sci ; 9: 193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503659

RESUMO

The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

19.
J Plant Physiol ; 227: 75-83, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29449027

RESUMO

Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lpr) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes.


Assuntos
Arabidopsis/metabolismo , Hordeum/metabolismo , Lipídeos/fisiologia , Oryza/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Água/metabolismo
20.
Front Plant Sci ; 8: 928, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626465

RESUMO

Current agricultural practices rely on heavy use of fertilizers for increased crop productivity. However, the problems associated with heavy fertilizer use, such as high cost and environmental pollution, require the development of crop species with increased nutrient use efficiency. In this study, by using transgenic approaches, we have revealed the critical role of OsNLA1 in phosphate (Pi) accumulation of rice plants. When grown under sufficient Pi and nitrate levels, OsNLA1 knockdown (Osnla1-1, Osnla1-2, and Osnla1-3) lines accumulated higher Pi content in their shoot tissues compared to wild-type, whereas, over-expression lines (OsNLA1-OE1, OsNLA1-OE2, and OsNLA1-OE3) accumulated the least levels of Pi. However, under high Pi levels, knockdown lines accumulated much higher Pi content compared to wild-type and exhibited Pi toxicity symptoms in the leaves. In contrast, the over-expression lines had 50-60% of the Pi content of wild-type and did not show such symptoms. When grown under limiting nitrate levels, OsNLA1 transgenic lines also displayed a similar pattern in Pi accumulation and Pi toxicity symptoms compared to wild-type suggesting an existence of cross-talk between nitrogen (N) and phosphorous (P), which is regulated by OsNLA1. The greater Pi accumulation in knockdown lines was a result of enhanced Pi uptake/permeability of roots compared to the wild-type. The cross-talk between N and P was found to be nitrate specific since the knockdown lines failed to over-accumulate Pi under low (sub-optimal) ammonium level. Moreover, OsNLA1 was also found to interact with OsPHO2, a known regulator of Pi homeostasis, in a Yeast Two-Hybrid (Y2H) assay. Taken together, these results show that OsNLA1 is involved in Pi homeostasis regulating Pi uptake and accumulation in rice plants and may provide an opportunity to enhance P use efficiency by manipulating nitrate supply in the soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA