Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Nat Metab ; 6(1): 153-168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38243132

RESUMO

The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing.


Assuntos
Heterocromatina , S-Adenosilmetionina , Humanos , Feminino , Masculino , Camundongos , Animais , Idoso , S-Adenosilmetionina/metabolismo , Envelhecimento , Poliaminas/metabolismo , Senescência Celular , Músculos/metabolismo
2.
Stem Cells ; 42(3): 266-277, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38066665

RESUMO

Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-sequencing to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed an MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.


Assuntos
Células-Tronco Adultas , Músculo Esquelético , Animais , Camundongos , Diferenciação Celular , Divisão Celular
5.
EMBO Mol Med ; 15(12): e17405, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37927228

RESUMO

Fibrosis is associated with compromised muscle functionality in Duchenne muscular dystrophy (DMD). We report observations with tissues from dystrophic patients and mice supporting a model to explain fibrosis in DMD, which relies on the crosstalk between the complement and the WNT signaling pathways and the functional interactions of two cellular types. Fibro-adipogenic progenitors and macrophages, which populate the inflamed dystrophic muscles, act as a combinatorial source of WNT activity by secreting distinct subunits of the C1 complement complex. The resulting aberrant activation of the WNT signaling in responsive cells, such as fibro-adipogenic progenitors, contributes to fibrosis. Indeed, pharmacological inhibition of the C1r/s subunits in a murine model of DMD mitigated the activation of the WNT signaling pathway, reduced the fibrogenic characteristics of the fibro-adipogenic progenitors, and ameliorated the dystrophic phenotype. These studies shed new light on the molecular and cellular mechanisms responsible for fibrosis in muscular dystrophy and open to new therapeutic strategies.


Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Humanos , Camundongos , Animais , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Via de Sinalização Wnt , Fibrose , Camundongos Endogâmicos mdx
6.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37699398

RESUMO

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Assuntos
Senescência Celular , Senoterapia , Senescência Celular/genética , Morte Celular , Compostos de Anilina
8.
Cell Stem Cell ; 30(5): 689-705.e4, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080206

RESUMO

Exercise has the ability to rejuvenate stem cells and improve tissue regeneration in aging animals. However, the cellular and molecular changes elicited by exercise have not been systematically studied across a broad range of cell types in stem cell compartments. We subjected young and old mice to aerobic exercise and generated a single-cell transcriptomic atlas of muscle, neural, and hematopoietic stem cells with their niche cells and progeny, complemented by whole transcriptome analysis of single myofibers. We found that exercise ameliorated the upregulation of a number of inflammatory pathways associated with old age and restored aspects of intercellular communication mediated by immune cells within these stem cell compartments. Exercise has a profound impact on the composition and transcriptomic landscape of circulating and tissue-resident immune cells. Our study provides a comprehensive view of the coordinated responses of multiple aged stem cells and niche cells to exercise at the transcriptomic level.


Assuntos
Envelhecimento , Condicionamento Físico Animal , Camundongos , Animais , Envelhecimento/fisiologia , Células-Tronco Hematopoéticas , Transcriptoma/genética , Perfilação da Expressão Gênica , Músculo Esquelético , Nicho de Células-Tronco , Mamíferos
9.
Nat Aging ; 3(1): 121-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118510

RESUMO

The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.


Assuntos
Envelhecimento , Rejuvenescimento , Camundongos , Animais , Envelhecimento/genética , Senescência Celular , Encéfalo , Neurogênese
10.
Cell Rep ; 42(5): 112440, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119138

RESUMO

Elucidating the transitional stages that define the pathway stem cells progress through during differentiation advances our understanding of biology and fosters the identification of therapeutic opportunities. However, distinguishing progenitor cells from other cell types and placing them in an epistatic pathway is challenging. This is exemplified in the adipocyte lineage, where the stromal vascular fraction (SVF) from adipose tissue is enriched for progenitor cells but also contains heterogeneous populations of cells. Single-cell RNA sequencing (scRNA-seq) has begun to facilitate the deconvolution of cell types in the SVF, and a hierarchical structure is emerging. Here, we use scRNA-seq to discover a population of CD31- CD45- cells in the SVF that are distinguished by a specific expression profile. Further, we place this population on an epistatic pathway upstream of the previously defined preadipocyte population. Finally, we discover functional properties of this population with broad implications, including revealing physiological mechanisms that regulate adipogenesis.


Assuntos
Tecido Adiposo , Células Estromais , Células Estromais/metabolismo , Tecido Adiposo/metabolismo , Adipócitos , Diferenciação Celular , Células-Tronco
11.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36865124

RESUMO

Loss of muscle stem cell (MuSC) self-renewal with aging reflects a combination of influences from the intracellular (e.g., post-transcriptional modifications) and extracellular (e.g., matrix stiffness) environment. Whereas conventional single cell analyses have revealed valuable insights into factors contributing to impaired self-renewal with age, most are limited by static measurements that fail to capture nonlinear dynamics. Using bioengineered matrices mimicking the stiffness of young and old muscle, we showed that while young MuSCs were unaffected by aged matrices, old MuSCs were phenotypically rejuvenated by young matrices. Dynamical modeling of RNA velocity vector fields in silico revealed that soft matrices promoted a self-renewing state in old MuSCs by attenuating RNA decay. Vector field perturbations demonstrated that the effects of matrix stiffness on MuSC self-renewal could be circumvented by fine-tuning the expression of the RNA decay machinery. These results demonstrate that post-transcriptional dynamics dictate the negative effect of aged matrices on MuSC self-renewal.

12.
Dev Cell ; 58(6): 489-505.e7, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36898377

RESUMO

Loss of muscle mass is a common manifestation of chronic disease. We find the canonical Wnt pathway to be activated in mesenchymal progenitors (MPs) from cancer-induced cachectic mouse muscle. Next, we induce ß-catenin transcriptional activity in murine MPs. As a result, we observe expansion of MPs in the absence of tissue damage, as well as rapid loss of muscle mass. Because MPs are present throughout the organism, we use spatially restricted CRE activation and show that the induction of tissue-resident MP activation is sufficient to induce muscle atrophy. We further identify increased expression of stromal NOGGIN and ACTIVIN-A as key drivers of atrophic processes in myofibers, and we verify their expression by MPs in cachectic muscle. Finally, we show that blocking ACTIVIN-A rescues the mass loss phenotype triggered by ß-catenin activation in MPs, confirming its key functional role and strengthening the rationale for targeting this pathway in chronic disease.


Assuntos
Via de Sinalização Wnt , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , Ativinas , Músculos/metabolismo
13.
Nat Rev Mol Cell Biol ; 24(5): 334-354, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922629

RESUMO

Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.


Assuntos
Células-Tronco Adultas , Animais , Camundongos , Diferenciação Celular/genética , Divisão Celular , Células-Tronco Adultas/metabolismo , Fibras Musculares Esqueléticas , Células-Tronco Hematopoéticas , Mamíferos
14.
Cell Metab ; 35(3): 472-486.e6, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36854304

RESUMO

With age, skeletal muscle stem cells (MuSCs) activate out of quiescence more slowly and with increased death, leading to defective muscle repair. To explore the molecular underpinnings of these defects, we combined multiomics, single-cell measurements, and functional testing of MuSCs from young and old mice. The multiomics approach allowed us to assess which changes are causal, which are compensatory, and which are simply correlative. We identified glutathione (GSH) metabolism as perturbed in old MuSCs, with both causal and compensatory components. Contrary to young MuSCs, old MuSCs exhibit a population dichotomy composed of GSHhigh cells (comparable with young MuSCs) and GSHlow cells with impaired functionality. Mechanistically, we show that antagonism between NRF2 and NF-κB maintains this bimodality. Experimental manipulation of GSH levels altered the functional dichotomy of aged MuSCs. These findings identify a novel mechanism of stem cell aging and highlight glutathione metabolism as an accessible target for reversing MuSC aging.


Assuntos
Multiômica , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Senescência Celular , Envelhecimento/fisiologia
15.
Nat Rev Mol Cell Biol ; 24(1): 45-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859206

RESUMO

Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.


Assuntos
Rejuvenescimento , Células-Tronco , Senescência Celular/fisiologia , Diferenciação Celular , Nicho de Células-Tronco
16.
Biomaterials ; 290: 121818, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209578

RESUMO

Volumetric muscle loss (VML), characterized by an irreversible loss of skeletal muscle due to trauma or surgery, is accompanied by severe functional impairment and long-term disability. Tissue engineering strategies combining stem cells and biomaterials hold great promise for skeletal muscle regeneration. However, scaffolds, including decellularized extracellular matrix (dECM), hydrogels, and electrospun fibers, used for VML applications generally lack macroporosity. As a result, the scaffolds used typically delay host cell infiltration, transplanted cell proliferation, and new tissue formation. To overcome these limitations, we engineered a macroporous dECM-methacrylate (dECM-MA) hydrogel, which we will refer to as a dECM-MA sponge, and investigated its therapeutic potential in vivo. Our results demonstrate that dECM-MA sponges promoted early cellularization, endothelialization, and establishment of a pro-regenerative immune microenvironment in a mouse VML model. In addition, dECM-MA sponges enhanced the proliferation of transplanted primary muscle stem cells, muscle tissue regeneration, and functional recovery four weeks after implantation. Finally, we investigated the scale-up potential of our scaffolds using a rat VML model and found that dECM-MA sponges significantly improved transplanted cell proliferation and muscle regeneration compared to conventional dECM scaffolds. Together, these results validate macroporous hydrogels as novel scaffolds for VML treatment and skeletal muscle regeneration.


Assuntos
Hidrogéis , Engenharia Tecidual , Camundongos , Ratos , Animais , Engenharia Tecidual/métodos , Músculo Esquelético/fisiologia , Células-Tronco , Mioblastos , Alicerces Teciduais , Matriz Extracelular
17.
PLoS One ; 17(9): e0275298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166456

RESUMO

Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.


Assuntos
RNA Catalítico , RNA , Diferenciação Celular/genética , Ligantes , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , RNA/genética , RNA/metabolismo , RNA Catalítico/metabolismo , Teofilina/metabolismo , Teofilina/farmacologia
19.
Lancet Child Adolesc Health ; 6(9): 654-666, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963270

RESUMO

Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.


Assuntos
COVID-19 , Medicina Regenerativa , Criança , Humanos , Engenharia Tecidual
20.
Elife ; 112022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695839

RESUMO

RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Animais , Diferenciação Celular , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA