Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Primatol ; 85(12): e23556, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37779335

RESUMO

One of the most fundamental aspects of a species' behavioral strategy is its activity budget; for primates this generally involves the allocation of available time among resting, feeding, traveling, and social behavior. Comparisons between species, populations, or individuals can reveal divergences in adaptive strategies and current stressors, and reflect responses to such diverse pressures as predation, thermoregulation, nutrition, and social needs. Further, variation across seasons is an important part of behavioral strategies to survive food scarcity; this can involve increasing or decreasing effort. We documented activity over the 24-h cycle for the cathemeral, frugivorous Eulemur fulvus and the diurnal, folivorous Propithecus diadema across 13-18 months at Tsinjoarivo, Madagascar. Their activity budgets were dominated by resting (E. fulvus: 74.1%; P. diadema: 85.2%), followed by feeding (15.8%, 12.4%), traveling (9.31%, 1.74%) and social activities (0.76%, 0.70%), respectively. The lower feeding and higher resting in P. diadema likely reflect slower gastrointestinal transit and higher reliance on microbial fermentation to extract energy from fibrous food. The two species showed opposite lean season strategies. E. fulvus increased activity, with more feeding but less travel time, consistent with a shift to less-profitable fruits, and some leaves and flowers, while increasing feeding effort to compensate ("energy maximizing"). P. diadema showed less variation across months, but the lean season still evoked reduced effort across the board (feeding, travel, and social behavior), consistent with a "time minimizing" strategy prioritizing energy conservation and microbe-assisted digestion. Understanding these divergent shifts is key to understanding natural behavior and the extent of behavioral flexibility under stressful conditions. Finally, the complex patterns of fruit availability (intra- and interannually) and the species' behavioral responses across months underscore the need to move beyond simplistic "lean/abundant season" and "fruit/leaf" dichotomies in understanding underlying energetic strategies, and species' vulnerability to habitat change.


Assuntos
Lemur , Strepsirhini , Animais , Lemur/fisiologia , Estações do Ano , Ecossistema , Frutas , Madagáscar , Comportamento Alimentar/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34162703

RESUMO

No endemic Madagascar animal with body mass >10 kg survived a relatively recent wave of extinction on the island. From morphological and isotopic analyses of skeletal "subfossil" remains we can reconstruct some of the biology and behavioral ecology of giant lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy megafauna that survived into the past millennium. Yet, much about the evolutionary biology of these now-extinct species remains unknown, along with persistent phylogenetic uncertainty in some cases. Thankfully, despite the challenges of DNA preservation in tropical and subtropical environments, technical advances have enabled the recovery of ancient DNA from some Malagasy subfossil specimens. Here, we present a nuclear genome sequence (∼2× coverage) for one of the largest extinct lemurs, the koala lemur Megaladapis edwardsi (∼85 kg). To support the testing of key phylogenetic and evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur mustelinus, and we aligned these sequences with previously published genomes for three other extant lemurs and 47 nonlemur vertebrates. Our phylogenetic results confirm that Megaladapis is most closely related to the extant Lemuridae (typified in our analysis by E. rufifrons) to the exclusion of L. mustelinus, which contradicts morphology-based phylogenies. Our evolutionary analyses identified significant convergent evolution between M. edwardsi and an extant folivore (a colobine monkey) and an herbivore (horse) in genes encoding proteins that function in plant toxin biodegradation and nutrient absorption. These results suggest that koala lemurs were highly adapted to a leaf-based diet, which may also explain their convergent craniodental morphology with the small-bodied folivore Lepilemur.


Assuntos
Núcleo Celular/genética , Extinção Biológica , Genoma , Lemur/genética , Filogenia , Aminoácidos/genética , Animais , Sequência de Bases , Evolução Molecular , Genômica , Herbivoria/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA