Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 17(41): 9387-9398, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34605527

RESUMO

Physical aging in colloidal dispersions manifests as a reduction in kinetic freedom of the colloids. In aqueous dispersions of charged clay colloids, the role of interparticle electrostatic interactions in determining the aging dynamics has been evaluated extensively. Despite water being the dispersion medium, the influence of water structure on the physicochemical properties of aging clay dispersions has, however, not been considered before. In this work, we use LAPONITE®, a model hectorite clay mineral that acquires surface charges when dispersed in water, to study the relative contributions of dispersion medium structure and interparticle electrostatic interactions on the physicochemical properties of aging hectorite clay dispersions. The structure of the dispersion medium is modified either by incorporating dissociating/non-dissociating kosmotropic (structure-inducing) or chaotropic (structure-disrupting) molecules or by changing dispersion temperature. Photon correlation spectroscopy, rheological measurements and particle-scale imaging are employed to evaluate the physicochemical properties of the dispersions. Our experiments involving incorporation of external additives demonstrate a strong influence of dispersion medium structure on the dispersion properties when the interparticle electrostatic interactions are weak. We introduce a new temperature dependent measurement protocol, wherein the temperature of the medium is fixed before adding the clay particles, to manipulate the hydrogen bonds in the aqueous medium in the absence of external additives. Accelerated aging, observed upon raising the temperature regardless of the experimental thermal histories, is attributed to increased interparticle electrostatic interactions as in the room temperature experiments with ionic additives. Our study identifies that in the presence of weak interparticle electrostatic interactions, changes in the physicochemical properties of charged clay dispersions can be driven by manipulating hydrogen bond populations in aqueous medium.

2.
J Phys Condens Matter ; 30(31): 315103, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29944119

RESUMO

Intermolecular hydrogen bonds play a crucial role in determining the unique characteristics of liquid water. We present low-frequency (1 Hz-40 MHz) dielectric spectroscopic investigations on water in the presence and absence of added solutes at different temperatures from 10 °C to 60 °C. The intersection points of temperature dependent permittivity contours at the vicinity of isopermitive frequency (IPF) in water are recorded and its properties are presumed to be related to the extent of hydrogen bond networks in water. IPF is defined as the frequency at which the relative permittivity of water is almost independent of temperature. The set of intersection points of temperature dependent permittivity contours at the vicinity of IPF are characterized by the mean [Formula: see text] and root-mean-square deviation/standard deviation [Formula: see text] associated with IPF. The tunability of M IPF by the addition of NaCl and MgCl2 salt emphasizes the strong correlation between the concentration of ions in water and the M IPF. The [Formula: see text] is surmised to be related to the orientational correlations of water dipoles as well as to the intermolecular hydrogen bond networks in water. Further, alterations in [Formula: see text] is observed with the addition of kosmotropic and chaotropic solutes into water and are thought to arise due to the restructuring of hydrogen bond networks in water in presence of added solutes. Notably, the solute induced reconfiguration of hydrogen bond networks in water or often-discussed structure making/breaking effects of the added solutes in water can be inferred, albeit qualitatively, by examining the M IPF and [Formula: see text]. Further, the Gaussian deconvoluted OH-stretching modes present in the Raman spectra of water and aqueous solutions of IPA and DMF strongly endorses the structural rearrangements occurring in water in presence of kosmotropes and chaotropes and are in line with the results derived from the root-mean-square deviation in IPF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA