Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674357

RESUMO

Andrographis paniculata (Burm. f.) Nees is an important medicinal plant known for its bioactive compound andrographolide. NAC transcription factors (NAM, ATAF1/2, and CUC2) play a crucial role in secondary metabolite production, stress responses, and plant development through hormonal signaling. In this study, a putative partial transcript of three NAC family genes (ApNAC83, ApNAC21 22 and ApNAC02) was used to isolate full length genes using RACE. Bioinformatics analyses such as protein structure prediction, cis-acting regulatory elements, and gene ontology analysis were performed. Based on in silico predictions, the diterpenoid profiling of the plant's leaves (five-week-old) and the real-time PCR-based expression analysis of isolated NAC genes under abscisic acid (ABA) treatment were performed. Additionally, the expression analysis of isolated NAC genes under MeJA treatment and transient expression in Nicotiana tabacum was performed. Full-length sequences of three members of the NAC transcription factor family, ApNAC83 (1102 bp), ApNAC21 22 (996 bp), and ApNAC02 (1011 bp), were isolated and subjected to the promoter and gene ontology analysis, which indicated their role in transcriptional regulation, DNA binding, ABA-activated signaling, and stress management. It was observed that ABA treatment leads to a higher accumulation of andrographolide and 14-deoxyandrographolide content, along with the upregulation of ApNAC02 (9.6-fold) and the downregulation of ApNAC83 and ApNAC21 22 in the leaves. With methyl jasmonate treatment, ApNAC21 22 expression decreased, while ApNAC02 increased (1.9-fold), with no significant change being observed in ApNAC83. The transient expression of the isolated NAC genes in a heterologous system (Nicotiana benthamiana) demonstrated their functional transcriptional activity, leading to the upregulation of the NtHMGR gene, which is related to the terpene pathway in tobacco. The expression analysis and heterologous expression of ApNAC21 22 and ApNAC02 indicated their role in andrographolide biosynthesis.


Assuntos
Acetatos , Andrographis , Ciclopentanos , Diterpenos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas , Fatores de Transcrição , Diterpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Andrographis/genética , Andrographis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Filogenia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
Plant Biotechnol J ; 21(8): 1528-1541, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36529911

RESUMO

The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Açúcares/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
3.
Mol Plant Microbe Interact ; 35(11): 1034-1047, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35939621

RESUMO

Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cicer , Cicer/genética , Cicer/microbiologia , Transcriptoma/genética , Doenças das Plantas/microbiologia
4.
Plant Physiol ; 190(4): 2380-2397, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35880840

RESUMO

High ambient temperature suppresses Arabidopsis (Arabidopsis thaliana) rosette leaf area and elongates the stem and petiole. While the mechanism underlying the temperature-induced elongation response has been extensively studied, the genetic basis of temperature regulation of leaf size is largely unknown. Here, we show that warm temperature inhibits cell proliferation in Arabidopsis leaves, resulting in fewer cells compared to the control condition. Cellular phenotyping and genetic and biochemical analyses established the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and TEOSINTE BRANCHED1/CYCLOIDEA/PCF4 (TCP4) transcription factors in the suppression of Arabidopsis leaf area under high temperature by a reduction in cell number. We show that temperature-mediated suppression of cell proliferation requires PIF4, which interacts with TCP4 and regulates the expression of the cell cycle inhibitor KIP-RELATED PROTEIN1 (KRP1) to control leaf size under high temperature. Warm temperature induces binding of both PIF4 and TCP4 to the KRP1 promoter. PIF4 binding to KRP1 under high temperature is TCP4 dependent as TCP4 regulates PIF4 transcript levels under high temperature. We propose a model where a warm temperature-mediated accumulation of PIF4 in leaf cells promotes its binding to the KRP1 promoter in a TCP4-dependent way to regulate cell production and leaf size. Our finding of high temperature-mediated transcriptional upregulation of KRP1 integrates a developmental signal with an environmental signal that converges on a basal cell regulatory process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Divisão Celular
5.
Mol Plant Microbe Interact ; 35(7): 583-591, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35253477

RESUMO

Drought plays a central role in increasing the incidence and severity of dry root rot (DRR) disease in chickpea. This is an economically devastating disease, compromising chickpea yields particularly severely in recent years due to erratic rainfall patterns. Macrophomina phaseolina (formerly Rhizoctonia bataticola) is the causal agent of DRR disease in the chickpea plant. The infection pattern in chickpea roots under well-watered conditions and drought stress are poorly understood at present. This study provides detailed disease symptomatology and the characteristics of DRR fungus at morphological and molecular levels. Using microscopy techniques, the infection pattern of DRR fungus in susceptible chickpea roots was investigated under well-watered and drought-stress conditions. Our observations suggested that drought stress intensifies the progression of already ongoing infection by weakening the endodermal barrier and overall defense. Transcriptomic analysis suggested that the plant's innate immune defense program is downregulated in infected roots when subjected to drought stress. Furthermore, genes involved in hormonal regulation are differentially expressed under drought stress. These findings provide hints in terms of potential chickpea genes to target in crop improvement programs to develop climate-change-resilient cultivars.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cicer , Ascomicetos , Cicer/genética , Cicer/microbiologia , Secas , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/microbiologia , Água
6.
New Phytol ; 234(3): 867-883, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152411

RESUMO

Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size. Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process. The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length. Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.


Assuntos
Oryza , Divisão Celular , Giberelinas/metabolismo , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo
7.
J Exp Bot ; 72(20): 7119-7135, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34185840

RESUMO

The importance of increasing photosynthetic efficiency for sustainable crop yield increases to feed the growing world population is well recognized. The natural genetic variation in leaf photosynthesis in crop plants is largely unexploited for increasing yield potential. The genus Oryza, including cultivated rice and wild relatives, offers tremendous genetic variability to explore photosynthetic differences and underlying biochemical, photochemical, and developmental traits. We quantified leaf photosynthesis and related physiological parameters for six cultivated and three wild rice genotypes, and identified photosynthetically efficient wild rice accessions. Fitting A/Ci curves and biochemical analyses showed that leaf photosynthesis in cultivated rice varieties IR 64 and Nipponbare was limited due to leaf nitrogen content, Rubisco activity, and electron transport rate compared with photosynthetically efficient wild rice accessions Oryza australiensis and Oryza latifolia. The selected wild rice accessions with high leaf photosynthesis per unit area had anatomical features such as larger mesophyll cells with more chloroplasts, fewer mesophyll cells between two adjacent veins, and higher mesophyll cell and chloroplast surface area exposed to intercellular space. Our results show the existence of desirable variations in Rubisco activity, electron transport rate, and leaf anatomical features that could be targeted for increasing the photosynthetic efficiency of cultivated rice varieties.


Assuntos
Oryza , Ribulose-Bifosfato Carboxilase , Transporte de Elétrons , Células do Mesofilo , Oryza/genética , Fotossíntese , Folhas de Planta
8.
J Exp Bot ; 72(12): 4355-4372, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33587747

RESUMO

Source-sink relationships are key to overall crop performance. Detailed understanding of the factors that determine source-sink dynamics is imperative for the balance of biomass and grain yield in crop plants. We investigated the differences in source-sink relationships between a cultivated rice, Oryza sativa cv. Nipponbare, and a wild rice, Oryza australiensis, which show striking differences in biomass and grain yield. Oryza australiensis, which accumulates a higher biomass, not only showed higher photosynthesis per unit leaf area but also exported more sucrose from leaves compared with Nipponbare. However, grain features and sugar content suggested limited sucrose mobilization to grains in the wild rice due to vasculature and sucrose transporter functions. Low cell wall invertase activity and high sucrose synthase cleavage activity followed by higher expression of cellulose synthase genes in O. australiensis stem indicated that it utilized photosynthates preferentially for the synthesis of structural carbohydrates, resulting in high biomass. In contrast, source-sink relationships favored high grain yield in Nipponbare via accumulation of transitory starch in the stem, due to higher expression of starch biosynthetic genes, which is mobilized to panicles at the grain filling stage. Thus, vascular features, sucrose transport, and functions of sugar metabolic enzymes explained the differences in source-sink relationships between Nipponbare and O. australiensis.


Assuntos
Oryza , Carbono , Grão Comestível , Oryza/genética , Proteínas de Plantas/genética , Sacarose
9.
Physiol Plant ; 171(4): 620-637, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32940908

RESUMO

Abiotic stresses, including drought and salinity, negatively affect plant development and physiology at molecular and metabolic levels. Sucrose transport, mediating distribution of photosynthates in plant, is a key physiological process impacted by drought and salinity stresses, as sucrose is a prime energy and signaling molecule as well as an osmolyte. Therefore, understanding the effects of abiotic stresses on sucrose transport and transporters, and underlying genetic and molecular mechanisms, is imperative to maintain sugar homeostasis in plants under stress. Here, we investigated the effects of drought and salinity stresses on sucrose transport and distribution, and on expression levels of genes encoding Sugars Will Eventually be Exported Transporters (SWEETs), along with a potential transcription factor regulating SWEET expression in rice. We observed that drought and salinity stresses increased the sucrose content in leaf and root tissues and in phloem sap of rice indica varieties. Expression analyses of SWEET genes and histochemical analysis of ß-glucuronidase-reporter transgenic plants suggested that OsSWEET13 and OsSWEET15 are major SWEET transporters regulating the sucrose transport and levels in response to the abiotic stresses. Transactivation analyses showed that an abscisic acid (ABA)-responsive transcription factor OsbZIP72 directly binds to the promoters of OsSWEET13 and OsSWEET15 and activates their expression. Taken together, the results showed that the higher expressions of OsSWEET13 and OsSWEET15 genes, induced by binding of an ABA-responsive transcription factor OsbZIP72 to the promoters, potentially modulate sucrose transport and distribution in response to the abiotic stresses. The mechanism could possibly be targeted for maintaining sugar homeostasis in rice under drought and salinity stresses.


Assuntos
Ácido Abscísico , Oryza , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino , Estresse Fisiológico , Sacarose
10.
Nat Commun ; 11(1): 5299, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082345

RESUMO

Parasitic plants of the genus Cuscuta penetrate shoots of host plants with haustoria and build a connection to the host vasculature to exhaust water, solutes and carbohydrates. Such infections usually stay unrecognized by the host and lead to harmful host plant damage. Here, we show a molecular mechanism of how plants can sense parasitic Cuscuta. We isolated an 11 kDa protein of the parasite cell wall and identified it as a glycine-rich protein (GRP). This GRP, as well as its minimal peptide epitope Crip21, serve as a pathogen-associated molecular pattern and specifically bind and activate a membrane-bound immune receptor of tomato, the Cuscuta Receptor 1 (CuRe1), leading to defense responses in resistant hosts. These findings provide the initial steps to understand the resistance mechanisms against parasitic plants and further offer great potential for protecting crops by engineering resistance against parasitic plants.


Assuntos
Parede Celular/metabolismo , Cuscuta/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Parede Celular/genética , Cuscuta/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Solanum lycopersicum/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética
11.
Genome ; 62(11): 705-714, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31330117

RESUMO

Oryza punctata Kotschy ex Steud. (BB, 2n = 24) is a wild species of rice that has many useful agronomic traits. An interspecific hybrid (AB, 2n = 24) was produced by crossing O. punctata and Oryza sativa variety Punjab Rice 122 (PR122, AA, 2n = 24) to broaden the narrow genetic base of cultivated rice. Cytological analysis of the pollen mother cells (PMCs) of the interspecific hybrids confirmed that they have 24 chromosomes. The F1 hybrids showed the presence of 19-20 univalents and 1-3 bivalents. The interspecific hybrid was treated with colchicine to produce a synthetic amphiploid (AABB, 2n = 48). Pollen fertility of the synthetic amphiploid was found to be greater than 50% and partial seed set was observed. Chromosome numbers in the PMCs of the synthetic amphiploid were 24II, showing normal pairing. Flow cytometric analysis also confirmed doubled genomic content in the synthetic amphiploid. Leaf morphological and anatomical studies of the synthetic amphiploid showed higher chlorophyll content and enlarged bundle sheath cells as compared with both of its parents. The synthetic amphiploid was backcrossed with PR122 to develop a series of addition and substitution lines for the transfer of useful genes from O. punctata with least linkage drag.


Assuntos
Cruzamentos Genéticos , Hibridização Genética , Oryza/genética , Melhoramento Vegetal , Ploidias , Cromossomos de Plantas , Estudos de Associação Genética , Meiose/genética , Oryza/anatomia & histologia , Folhas de Planta
12.
New Phytol ; 224(4): 1613-1626, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222750

RESUMO

The Arabidopsis COP1/SPA complex is a key repressor of photomorphogenesis that suppresses light signaling in the dark. Both COP1 and SPA proteins are essential components of this complex. Although COP1 also exists in humans, SPA genes are specific to the green lineage. To elucidate the evolution of SPA genes we analyzed SPA functions in the moss Physcomitrella patens by characterizing knockout mutants in the two Physcomitrella SPA genes PpSPAa and PpSPAb. Light-grown PpspaAB double mutants exhibit smaller gametophores than the wild-type. In the dark, PpspaAB mutant gametophores show enhanced continuation of growth but etiolate normally. Gravitropism in the dark is reduced in PpspaAB mutant protonemata. The expression of light-regulated genes is mostly not constitutive in PpspaAB mutants. PpSPA and PpCOP1 interact; PpCOP1 also interacts with the transcription factor PpHY5 and, indeed, PpHY5 is destabilized in dark-grown Physcomitrella. Degradation of PpHY5 in darkness, however, does not require PpSPAa and PpSPAb. The data suggest that COP1/SPA-mediated light signaling is only partially conserved between Arabidopsis and Physcomitrella. Whereas COP1/SPA interaction and HY5 degradation in darkness is conserved, the role of SPA proteins appears to have diverged. PpSPA genes, unlike their Arabidopsis counterparts, are only required to suppress a subset of light responses in darkness.


Assuntos
Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Evolução Biológica , Bryopsida/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Gravitropismo/genética , Luz , Mutação , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/genética
13.
New Phytol ; 220(1): 278-287, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29956327

RESUMO

Gevuina avellana (Proteaceae) is a typical tree from the South American temperate rainforest. Although this species mostly regenerates in shaded understories, it exhibits an exceptional ecological breadth, being able to live under a wide range of light conditions. Here we studied the genetic basis that underlies physiological acclimation of the photosynthetic responses of G. avellana under contrasting light conditions. We analyzed carbon assimilation and light energy used for photochemical processes in plants acclimated to contrasting light conditions. Also, we used a transcriptional profile of leaf primordia from G. avellana saplings growing under different light environments in their natural habitat, to identify the gene coexpression network underpinning photosynthetic performance and light-related processes. The photosynthetic parameters revealed optimal performance regardless of light conditions. Strikingly, the mechanism involved in dissipation of excess light energy showed no significant differences between high- and low-light-acclimated plants. The gene coexpression network defined a community structure consistent with the photochemical responses, including genes involved mainly in assembly and functioning of photosystems, photoprotection, and retrograde signaling. This ecophysiological genomics approach improves our understanding of the intraspecific variability that allows G. avellana to have optimal photochemical and photoprotective mechanisms in the diverse light habitats it encounters in nature.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes , Luz , Aclimatação/fisiologia , Aclimatação/efeitos da radiação , Clorofila/metabolismo , Fluorescência , Redes Reguladoras de Genes/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Análise de Componente Principal
14.
Development ; 143(18): 3283-94, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624833

RESUMO

A number of plant features and traits, such as overall plant architecture, leaf structure and morphological features, vascular architecture and flowering time are important determinants of photosynthetic efficiency and hence the overall performance of crop plants. The optimization of such developmental traits thus has great potential to increase biomass and crop yield. Here, we provide a comprehensive review of these developmental traits in crop plants, summarizing their genetic regulation and highlighting the potential of manipulating these traits for crop improvement. We also briefly review the effects of domestication on the developmental features of crop plants. Finally, we discuss the potential of functional genomics-based approaches to optimize plant developmental traits to increase yield.


Assuntos
Produtos Agrícolas/metabolismo , Folhas de Planta/metabolismo , Biomassa , Produtos Agrícolas/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/genética
15.
G3 (Bethesda) ; 6(10): 3169-3184, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27510891

RESUMO

Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Genes de Plantas , Estudos de Associação Genética , Folhas de Planta/genética , Locos de Características Quantitativas , Solanum lycopersicum/genética , Epistasia Genética , Estudos de Associação Genética/métodos , Genótipo , Endogamia , Cadeias de Markov , Modelos Genéticos , Fenótipo , Polimorfismo Genético , Característica Quantitativa Herdável
16.
Plant Physiol ; 172(1): 328-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27418589

RESUMO

Variation in gene expression, in addition to sequence polymorphisms, is known to influence developmental, physiological, and metabolic traits in plants. Genetic mapping populations have facilitated identification of expression quantitative trait loci (eQTL), the genetic determinants of variation in gene expression patterns. We used an introgression population developed from the wild desert-adapted Solanum pennellii and domesticated tomato (Solanum lycopersicum) to identify the genetic basis of transcript level variation. We established the effect of each introgression on the transcriptome and identified approximately 7,200 eQTL regulating the steady-state transcript levels of 5,300 genes. Barnes-Hut t-distributed stochastic neighbor embedding clustering identified 42 modules revealing novel associations between transcript level patterns and biological processes. The results showed a complex genetic architecture of global transcript abundance pattern in tomato. Several genetic hot spots regulating a large number of transcript level patterns relating to diverse biological processes such as plant defense and photosynthesis were identified. Important eQTL regulating transcript level patterns were related to leaf number and complexity as well as hypocotyl length. Genes associated with leaf development showed an inverse correlation with photosynthetic gene expression, but eQTL regulating genes associated with leaf development and photosynthesis were dispersed across the genome. This comprehensive eQTL analysis details the influence of these loci on plant phenotypes and will be a valuable community resource for investigations on the genetic effects of eQTL on phenotypic traits in tomato.


Assuntos
Fenômenos Biológicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas/genética , Solanum lycopersicum/genética , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Solanum/genética , Solanum/crescimento & desenvolvimento , Especificidade da Espécie
17.
Nat Genet ; 48(1): 89-93, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26569124

RESUMO

The circadian clock is a critical regulator of plant physiology and development, controlling key agricultural traits in crop plants. In addition, natural variation in circadian rhythms is important for local adaptation. However, quantitative modulation of circadian rhythms due to artificial selection has not yet been reported. Here we show that the circadian clock of cultivated tomato (Solanum lycopersicum) has slowed during domestication. Allelic variation of the tomato homolog of the Arabidopsis gene EID1 is responsible for a phase delay. Notably, the genomic region harboring EID1 shows signatures of a selective sweep. We find that the EID1 allele in cultivated tomatoes enhances plant performance specifically under long day photoperiods, suggesting that humans selected slower circadian rhythms to adapt the cultivated species to the long summer days it encountered as it was moved away from the equator.


Assuntos
Relógios Circadianos/genética , Produtos Agrícolas/genética , Proteínas de Plantas/genética , Seleção Genética , Solanum lycopersicum/genética , Alelos , Solanum lycopersicum/crescimento & desenvolvimento , Fotoperíodo , Filogenia , Locos de Características Quantitativas
18.
New Phytol ; 210(2): 694-708, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26680017

RESUMO

Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes de Plantas , Proteínas de Plantas/genética , Proteaceae/crescimento & desenvolvimento , Proteaceae/genética , Árvores/crescimento & desenvolvimento , Árvores/genética , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Luz , Anotação de Sequência Molecular , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Proteaceae/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Floresta Úmida , Árvores/efeitos da radiação , Regulação para Cima/genética
19.
Plant Physiol ; 169(3): 2030-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26381315

RESUMO

Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Proteínas de Homeodomínio/genética , Luz , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Meristema/anatomia & histologia , Meristema/genética , Meristema/fisiologia , Meristema/efeitos da radiação , Modelos Biológicos , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética
20.
PLoS Genet ; 11(1): e1004900, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569326

RESUMO

Convergent morphologies have arisen in plants multiple times. In non-vascular and vascular land plants, convergent morphology in the form of roots, stems, and leaves arose. The morphology of some green algae includes an anchoring holdfast, stipe, and leaf-like fronds. Such morphology occurs in the absence of multicellularity in the siphonous algae, which are single cells. Morphogenesis is separate from cellular division in the land plants, which although are multicellular, have been argued to exhibit properties similar to single celled organisms. Within the single, macroscopic cell of a siphonous alga, how are transcripts partitioned, and what can this tell us about the development of similar convergent structures in land plants? Here, we present a de novo assembled, intracellular transcriptomic atlas for the giant coenocyte Caulerpa taxifolia. Transcripts show a global, basal-apical pattern of distribution from the holdfast to the frond apex in which transcript identities roughly follow the flow of genetic information in the cell, transcription-to-translation. The analysis of the intersection of transcriptomic atlases of a land plant and Caulerpa suggests the recurrent recruitment of transcript accumulation patterns to organs over large evolutionary distances. Our results not only provide an intracellular atlas of transcript localization, but also demonstrate the contribution of transcript partitioning to morphology, independent from multicellularity, in plants.


Assuntos
Caulerpa/genética , Perfilação da Expressão Gênica , Morfogênese/genética , Caulerpa/crescimento & desenvolvimento , Ciclo Celular/genética , Divisão Celular/genética , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Análise de Componente Principal , Biossíntese de Proteínas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA