Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893837

RESUMO

Welded tuffs have a wide range of welding degrees and show significant variability in mechanical behavior. However, the detailed influence of welding degree on the meso-mechanical behavior of welded tuffs remains unclear. Based on petrographic and pore-structure analysis, we conducted a series of meso-mechanical experiments on weakly to strongly welded tuffs by utilizing a mesoscale real-time loading-observation-acquisition system. The results indicated that the strongly and weakly welded tuffs showed a small range in mineralogical composition and porosity, while the meso-mechanical behavior exhibited significant variability. Strongly welded tuffs showed lower uniaxial compression strength, weaker mechanical anisotropy, and smaller fracture surface roughness. In contrast, weakly welded tuffs exhibited higher uniaxial compression strength, stronger mechanical anisotropy, and rougher fracture surface roughness. Welded tuffs with strong packing and welding of glass shards tended to have fractures propagating along the maximum principal direction, while those with weak packing and welding of glass shards may have had failure along the alignment of glass shards. The influence of welding degree on the meso-mechanical behavior of welded tuffs probably originates from their diagenesis environments, mainly depending on the combined effect of the pyroclastic properties and pseudo-rhyolitic structure. The findings reveal the meso-mechanical differences of welded tuffs and shed light on improving tuffs for stable and durable construction.

2.
Materials (Basel) ; 11(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844280

RESUMO

The particle morphology and fabric of a granular soil influence its mechanical behavior. This study focuses on the evolution of the particle-level fabric and morphology of a uniformly graded sand sample subjected to one-dimensional compression up to 64 MPa. The microstructural changes with increased stresses were captured using in situ high-resolution X-ray computed tomography (X-ray CT) imaging. The processed images of particles were separated using the Monash Particle Separation Method (MPSM) for subsequent fabric and morphological analyses. The variations of various fabric parameters were studied using the separated particle volumes. New methods of assessing the morphology and crushability of particles were introduced including a comprehensive algorithm for determining coordination number, branch and contact normal vectors. Results of all fabric parameters were analyzed and discussed with reference to observed changes. Potential mechanisms were identified and relevant correlations were developed where warranted.

3.
Materials (Basel) ; 9(8)2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-28773784

RESUMO

The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2). SC-CO2 causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.

4.
Materials (Basel) ; 9(11)2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28774001

RESUMO

This paper proposes a coupled thermal-hydrological-mechanical damage (THMD) model for the failure process of rock, in which coupling effects such as thermally induced rock deformation, water flow-induced thermal convection, and rock deformation-induced water flow are considered. The damage is considered to be the key factor that controls the THM coupling process and the heterogeneity of rock is characterized by the Weibull distribution. Next, numerical simulations on excavation-induced damage zones in Äspö pillar stability experiments (APSE) are carried out and the impact of in situ stress conditions on damage zone distribution is analysed. Then, further numerical simulations of damage evolution at the heating stage in APSE are carried out. The impacts of in situ stress state, swelling pressure and water pressure on damage evolution at the heating stage are simulated and analysed, respectively. The simulation results indicate that (1) the v-shaped notch at the sidewall of the pillar is predominantly controlled by the in situ stress trends and magnitude; (2) at the heating stage, the existence of confining pressure can suppress the occurrence of damage, including shear damage and tensile damage; and (3) the presence of water flow and water pressure can promote the occurrence of damage, especially shear damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA