Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 568657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193496

RESUMO

According to the UN-FAO, agricultural production must increase by 50% by 2050 to meet global demand for food. This goal can be accomplished, in part, by the development of improved cultivars coupled with modern best management practices. Overall, wheat production on farms will have to increase significantly to meet future demand, and in the face of a changing climate that poses risk to even current rates of production. Durum wheat [Triticum turgidum L. ssp. durum (Desf.)] is used largely for pasta, couscous and bulgur production. Durum producers face a range of factors spanning abiotic (frost damage, drought, and sprouting) and biotic (weed, disease, and insect pests) stresses that impact yields and quality specifications desired by export market end-users. Serious biotic threats include Fusarium head blight (FHB) and weed pest pressures, which have increased as a result of herbicide resistance. While genetic progress for yield and quality is on pace with common wheat (Triticum aestivum L.), development of resistant durum cultivars to FHB is still lagging. Thus, successful biotic and abiotic threat mitigation are ideal case studies in Genotype (G) × Environment (E) × Management (M) interactions where superior cultivars (G) are grown in at-risk regions (E) and require unique approaches to management (M) for sustainable durum production. Transformational approaches to research are needed in order for agronomists, breeders and durum producers to overcome production constraints. Designing robust agronomic systems for durum demands scientific creativity and foresight based on a deep understanding of constitutive components and their innumerable interactions with each other and the environment. This encompasses development of durum production systems that suit specific agro-ecozones and close the yield gap between genetic potential and on-farm achieved yield. Advances in individual technologies (e.g., genetic improvements, new pesticides, seeding technologies) are of little benefit until they are melded into resilient G × E × M systems that will flourish in the field under unpredictable conditions of prairie farmlands. We explore how recent genetic progress and selected management innovations can lead to a resilient and transformative durum production system.

2.
Front Plant Sci ; 11: 779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655595

RESUMO

Seeding rate in hard red spring wheat (HRSW; Triticum aestivum L.) production impacts input cost and grain yield. Predicting the optimal seeding rate (OSR) for HRSW cultivars can eliminate the need for costly seeding rate research and growers using OSRs can maximize yield and seeding efficiency. Data were compiled from seeding rate studies conducted in 32 environments in the Northern Plains United States to determine the OSR of HRSW cultivars grown in diverse environments. Twelve cultivars with diverse genetic and phenotypic characteristics were evaluated at five seeding rates in 2013-2015, and nine cultivars were evaluated in 2017-2018. OSR varied among cultivar within environments. Cultivar x environment interactions were explored with the objective of developing a decision support system (DSS) to aid growers in determining the OSR for the cultivar they select, and for the environment in which it is sown. A 10-fold repeated cross-validation of the seeding rate data was used to fit 10 decision tree models and the most robust model was selected based on minimizing the value for model variance. The final decision tree model for predicting OSR of HRSW cultivars in diverse environments was considered the most reliable as bias was minimized by pruning methods, and model variance was acceptable for OSR predictions (RMSE = 1.24). Findings from this model were used to develop the grower DSS for determining OSR dependent on cultivar straw strength (as a measure of lodging resistance), tillering capacity, and yield of the environment. Recommendations for OSR ranged from 3.1 to 4.5 million seeds ha-1. Growers can benefit from using this DSS by sowing at OSR relative to their average yields; especially when seeding new HRSW cultivars.

3.
J Agric Food Chem ; 68(2): 503-511, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31869217

RESUMO

Due to nonuniform maturation, some plants may not be at the recommended stage of maturity when preharvest glyphosate is applied. The objective of this study was to determine how preharvest glyphosate timing affects wheat starch physicochemical properties. Two wheat cultivars were grown in three locations, and glyphosate was applied at the soft dough stage (early application) and the ripe stage (commercial standard). Upon harvest, starch chemical characteristics were studied. The proportion of B-type starch granules was lower in treated samples, although the starch molecular weight was not affected. Rapidly digestible starch content was highest when glyphosate was applied at the ripe stage, and lowest in the control, and vice versa for slowly digestible starch. Additionally, flour pasting viscosity was significantly higher in samples treated at the soft dough stage. Overall, the effects on wheat starch physicochemical characteristics were more pronounced when glyphosate was applied at the soft dough stage of maturity.


Assuntos
Glicina/análogos & derivados , Herbicidas/farmacologia , Amido/química , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Fenômenos Químicos , Glicina/farmacologia , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/metabolismo , Triticum/química , Triticum/metabolismo , Glifosato
4.
J Econ Entomol ; 112(4): 1875-1886, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31114868

RESUMO

Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Proteínas de Bactérias , Endotoxinas , Resistência a Inseticidas , Larva , América do Norte , North Dakota , Plantas Geneticamente Modificadas , Zea mays
5.
J Econ Entomol ; 111(1): 348-360, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186516

RESUMO

Northern, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), and western, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), corn rootworms are economic pests of corn, Zea mays L. in North America. We measured the impacts of corn hybrids incorporated with Cry3Bb1, Cry34/35Ab1, and pyramided (Cry3Bb1 + Cry34/35Ab1) Bacillus thuringiensis Berliner (Bt) proteins, tefluthrin soil insecticide, and clothianidin insecticidal seed treatment on beetle emergence, larval feeding injury, and corn yield at five locations from 2013 to 2015 in eastern North Dakota. In most cases, emergence was significantly lower in Bt-protected corn than in non-Bt corn hybrids. Exceptions included Wyndmere, ND (2013), where D. barberi emergence from Cry34/35Ab1 plots was not different from that in the non-Bt hybrid, and Arthur, ND (2013), where D. v. virgifera emergence from Cry3Bb1 plots did not differ from that in the non-Bt hybrid. Bt hybrids generally produced increased grain yield compared with non-Bt corn where rootworm densities were high, and larval root-feeding injury was consistently lower in Bt-protected plots than in non-Bt corn. The lowest overall feeding injury and emergence levels occurred in plots planted with the Cry3Bb1 + Cry34/35Ab1 hybrid. Time to 50% cumulative emergence of both species was 5-7 d later in Bt-protected than in non-Bt hybrids. Tefluthrin and clothianidin were mostly inconsequential in relation to beetle emergence and larval root injury. Our findings could suggest that some North Dakota populations could be in early stages of increased tolerance to some Bt toxins; however, Bt corn hybrids currently provide effective protection against rootworm injury in eastern North Dakota.


Assuntos
Besouros/fisiologia , Ciclopropanos/farmacologia , Herbivoria , Hidrocarbonetos Fluorados/farmacologia , Inseticidas/farmacologia , Zea mays/fisiologia , Animais , Bacillus thuringiensis/química , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , North Dakota , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Solo/química , Zea mays/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA