Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Chemosphere ; 364: 143144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39168384

RESUMO

High demand for rare earth elements (REEs) has increased interest in their recovery from unconventional sources, such as acid mine drainage (AMD). AMD contains elevated concentrations of Mn, Fe, and Al, which precipitate as (oxy)hydroxide minerals as pH is raised. These precipitates can remove cations including REEs and Co from solution via sorption and/or coprecipitation. In this study we developed a method to recover these critical minerals by sorption to MnO2, precipitated by oxidation of in situ Mn (II) with added KMnO4 at acidic pH. MnO2 solids were prepared with varying concentrations of KMnO4, SO42-, and Cl-, to elucidate the effects of excess KMnO4, SO42- concentration, and ionic strength on adsorption. When using a stoichiometric ratio of Mn (II) and KMnO4, 100% removal of REEs and Co occurred at approximately pH 3.5, nearly 2 pH units lower than was observed by sorption to Fe and Al hydroxysulfates. When using excess KMnO4 nearly 100% removal of REEs and Co was accomplished at approximately pH 2, although SO42- was found to inhibit REE sorption. From these results, we developed a two-stage process for recovery of REEs from AMD; a preliminary pH adjustment to remove Fe and Al hydroxy-sulfates, followed by adding KMnO4, precipitating MnO2, enabling recovery of REEs and Co. We tested this process in a representative synthetic AMD, achieving a grade of 6.16 mg REEs per g of solid, which is 65 % of the maximum possible grade based on solution composition. Fractionation of REEs was observed, with light REEs (LREEs) preferentially sorbed to MnO2 relative to both medium REEs (MREEs) and heavy REEs (HREEs). In contrast, preferential sorption of HREEs was observed for sorption to Fe and Al oxyhydroxides at all pH ranges. These results suggest the mechanisms of REE sorption differ among the solids and warrant further study.


Assuntos
Cobalto , Compostos de Manganês , Metais Terras Raras , Mineração , Óxidos , Óxidos/química , Adsorção , Metais Terras Raras/química , Compostos de Manganês/química , Cobalto/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
2.
Environ Sci Technol ; 58(5): 2502-2513, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277687

RESUMO

Wildfires at the wildland-urban interface (WUI) are increasing in frequency and intensity, driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in the metal content in ash generated from burned structures in order to determine the potential risk to human and environmental health. Using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed leachable trace metal concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over 1000 structures in Boulder County, Colorado. Acid digestion revealed that ash derived from structures contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis. Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By comparing the amount of acid-extractable metals to that released by water and simulated epithelial lung fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The SELF leach showed that Cu and Ni were more bioaccessible (mg of leachable metal/mg of acid-extractable metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals that can negatively impact the health of both humans and the environment.


Assuntos
Metais Pesados , Oligoelementos , Incêndios Florestais , Humanos , Oligoelementos/análise , Metais/análise , Solo/química , Água , Metais Pesados/química
3.
Sci Total Environ ; 912: 168686, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000751

RESUMO

A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.


Assuntos
Água Potável , Nanopartículas Metálicas , Espectrometria de Massas/métodos , Água Potável/análise , Ultrafiltração , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química
4.
Sci Total Environ ; 898: 165492, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453708

RESUMO

Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially. This paper uses a transdisciplinary approach that combines natural and social sciences to develop a holistic picture of why mercury and cyanide converge in gold processing and potential impacts that may be worse than either practice in isolation. We show that socio-economic factors drive the comingling of mercury and cyanide practices in ASGM as much or more so than technical factors. The resultant Hg-CN complexes have been implicated in increasing the mobility of mercury, compared to elemental mercury used in Hg-only processing. To support future inquiry, we identify key knowledge gaps including the role of Hg-CN complexes in mercury oxidation, transport, and fate, and possible links to mercury methylation. The global extent and increase of mercury and cyanide processing in ASGM underscores the importance of further research. The immediacy of the problem also demands interim policy responses while research advances, though ultimately, the well-documented struggles of mercury reduction efforts in ASGM temper optimism about policy responses to the mercury-cyanide transition.

5.
Sci Total Environ ; 884: 163725, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116809

RESUMO

This study investigated critical metal (CM) geochemistry including rare earth elements (REEs), Co, Ni, and Mn in groundwaters below and surrounding two dredged material placement facilities (DMPFs). Metal concentrations are elevated at both sites, spanning several orders of magnitude. The highest CM concentrations measured exceed many environments considered as aqueous resources (Co and Ni > 1 mg L-1, REEs > 3 mg L-1). Correlations between sulfur and iron, major cations, and CMs indicate that oxidation of sulfides present in the DM releases metals both directly from sulfide minerals and indirectly through acid dissolution of and/or desorption from additional minerals. REE fractionation patterns indicate that their mobility in the groundwaters may be influenced by interactions with silicate, carbonate, and phosphate minerals. Significant positive Gd and Eu anomalies were observed, which may be attributed to increased mobility of Eu2+ and anthropogenic Gd. Nanogeochemical analysis of filtered samples revealed several REE-bearing nanoparticulate (diameter < 100 nm) species, some of which co-occurred with aluminum, suggesting an (oxy)hydroxide or a clay mineral component. Further characterization of soluble and nano scale geochemical speciation is needed to fully assess the viability of CM recovery from DM-associated groundwater. CM recovery from DM-associated waters can provide a beneficial use, both offsetting costs associated with disposal, and supplementing domestic CM resources.


Assuntos
Água Subterrânea , Metais Terras Raras , Monitoramento Ambiental , Metais/análise , Metais Terras Raras/análise , Água Subterrânea/química , Minerais/análise
6.
Sci Total Environ ; 876: 162478, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871713

RESUMO

Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Água , Minerais , Ferro , Poluentes Químicos da Água/análise
7.
Environ Sci Process Impacts ; 25(3): 405-414, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36629138

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Solo , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Fenômenos Químicos , Água , Água Subterrânea/química
8.
Environ Toxicol Chem ; 42(2): 512-524, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345954

RESUMO

Responses of stream ecosystems to gradual reductions in metal loading following remediation or restoration activities have been well documented in the literature. However, much less is known about how these systems respond to the immediate or more rapid elimination of metal inputs. Construction of a water treatment plant on the North Fork of Clear Creek (NFCC; CO, USA), a US Environmental Protection Agency Superfund site, captured, diverted, and treated the two major point-source inputs of acid mine drainage (AMD) and provided an opportunity to investigate immediate improvements in water quality. We conducted a 9-year study that included intensive within- and among-year monitoring of receiving-stream chemistry and benthic communities before and after construction of the treatment plant. Results showed a 64%-86% decrease in metal concentrations within months at the most contaminated sites. Benthic communities responded with increased abundance and diversity, but downstream stations remained impaired relative to reference conditions, with significantly lower taxonomic richness represented by a few dominant taxa (i.e., Baetis sp., Hydropsyche sp., Simulium sp., Orthocladiinae). Elevated metal concentrations from apparent residual sources, and relatively high conductivity from contributing major ions not removed during the treatment process, are likely limiting downstream recovery. Our study demonstrates that direct AMD treatment can rapidly improve water quality and benefit aquatic life, but effectiveness is limited, in part, to the extent that inputs of metals are captured and treated. Consideration should also be given to the effects of elevated major ion concentrations from the treated effluent not removed during the lime treatment process. Continued chemical and biological monitoring will be needed to quantify the NFCC recovery trajectory and to inform future remediation strategies. Environ Toxicol Chem 2023;42:512-524. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental/métodos , Metais , Qualidade da Água , Mineração , Ácidos
9.
Environ Toxicol Chem ; 42(2): 495-511, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349955

RESUMO

We monitored physical-chemical conditions in the North Fork of Clear Creek in Colorado (USA) before, during, and after the start of remediation (lime treatment) to remove metals from two major inputs of acid mine drainage (AMD) water. In addition, we analyzed historical monitoring data that extended back more than two decades. Concentration-discharge (C-D) and load-discharge (L-D) plots accounted for discharge dependence in concentrations and loads of metals, major ions, and other water chemistry parameters. Total and dissolved concentrations, and loads of the metals decreased after remediation began, with the largest decreases usually during low stream flow. However, postremediation concentrations and loads remained slightly to considerably higher than reference, probably because of unidentified groundwater seeps and/or small surface flows. Dissolved Cu concentrations decreased much less than total Cu concentrations, because the percentage of total Cu in the dissolved phase increased considerably as particulate Fe (PFe) concentration decreased. We conclude that 1) water chemistry can change to a new steady state or pseudo-steady state relatively quickly after major AMD inputs to a stream are remediated; 2) elevated flows during snowmelt and rainfall periods can mobilize additional amounts of major ions and metals, resulting in in-stream concentrations that are manifestations of both dilution and mobilization; 3) although lime treatment of AMD-related waters can decrease metal concentrations, it does not decrease elevated concentrations of major ions that might impair sensitive stream invertebrates; 4) although Fe is toxic to aquatic organisms, PFe adsorbs other metals and thereby provides protection against their toxicity; and 5) use of C-D and L-D plots and element ratios can indicate the presence of unidentified AMD inputs to a stream. Environ Toxicol Chem 2023;42:495-511. © 2022 SETAC.


Assuntos
Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Metais , Água , Monitoramento Ambiental
10.
Environ Toxicol Chem ; 42(2): 449-462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484737

RESUMO

Dissolved copper (Cu) can contribute to toxicity in aquatic systems impacted by acid mine drainage (AMD), and its bioavailability is influenced by aqueous complexation with organic ligands that predominantly include fulvic acids (FAs). Because the geochemical fractionation of FAs that accompanies sorption to hydrous aluminum oxides (HAOs) and hydrous iron oxides (HFOs) can alter Cu complexation with FA, we investigated FAs isolated from three categories of water (pristine, AMD, and in situ-fractionated mixtures of pristine and AMD collected at stream confluences) in three mining-impacted alpine watersheds in central Colorado, USA. We also conducted geochemical fractionation of field-collected FAs and Suwannee River FAs by precipitating HAOs and HFOs in the laboratory. Spectral properties of the FAs (e.g., UV-VIS absorbance) were altered by geochemical fractionation, and in acute toxicity tests with an aquatic invertebrate (Daphnia magna) Cu was more toxic in the presence of in situ- and laboratory-fractionated FAs (median effect concentration [EC50] 19-50 µg Cu L-1 ) than in the presence of nonfractionated FAs (EC50 48-146 µg Cu L-1 ). After adjusting for the strain-specific sensitivity of our D. magna, we improved the accuracy of Biotic Ligand Model predictions of Cu EC50 values for AMD-related FAs by using an "effective dissolved organic carbon" based on spectral properties that account for among-FA differences in protectiveness against Cu toxicity. However, some differences remained between predicted and measured EC50 values, especially for FAs from AMD-related waters that might contain important metal-binding moieties not accounted for by our measured spectral indices. Environ Toxicol Chem 2023;42:449-462. © 2022 SETAC.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/química , Daphnia , Benzopiranos , Água , Ligantes , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA