Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(4)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227372

RESUMO

Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.


Assuntos
Colite , MicroRNAs , Animais , Humanos , Camundongos , Proliferação de Células/genética , Colite/genética , Colite/patologia , Mucosa Intestinal/patologia , Mamíferos/genética , MicroRNAs/genética , Regeneração/genética , RNA Circular/genética
2.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696579

RESUMO

Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.


Assuntos
Proteína Semelhante a ELAV 1 , MicroRNAs , Mucosa , Celulas de Paneth , Animais , Humanos , Camundongos , Transporte Biológico , Fenômenos Fisiológicos Celulares , Mucosa Intestinal , MicroRNAs/genética , Proteínas Mitocondriais , Células-Tronco , Proteína Semelhante a ELAV 1/genética
3.
Am J Physiol Cell Physiol ; 324(2): C565-C572, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622069

RESUMO

Intestinal epithelial barrier defects occur commonly during a variety of pathological conditions, though their underlying mechanisms are not completely understood. Sphingosine-1-phosphate (S1P) has been shown to be a critical regulator of proliferation and of maintenance of an intact intestinal epithelial barrier, as is also sphingosine kinase 1 (SphK1), the rate-limiting enzyme for S1P synthesis. SphK1 has been shown to modulate its effect on intestinal epithelial proliferation through increased levels of c-myc. We conducted genome-wide profile analysis to search for differential microRNA expression related to overexpressed SphK1 demonstrating adjusted expression of microRNA 542-5p (miR-542-5p). Here, we show that miR-542-5p is regulated by SphK1 activity and is an effector of c-myc translation that ultimately serves as a critical regulator of the intestinal epithelial barrier. miR-542-5p directly regulates c-myc translation through direct binding to the c-myc mRNA. Exogenous S1P analogs administered in vivo protect murine intestinal barrier from damage due to mesenteric ischemia reperfusion, and damaged intestinal tissue had increased levels of miR-542-5p. These results indicate that miR-542-5p plays a critical role in the regulation of S1P-mediated intestinal barrier function, and may highlight a novel role in potential therapies.


Assuntos
Intestinos , MicroRNAs , Animais , Camundongos , Proliferação de Células/genética , Células Epiteliais/metabolismo , Lisofosfolipídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina
4.
EMBO Rep ; 24(2): e54925, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36440604

RESUMO

Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.


Assuntos
Colite , MicroRNAs , Celulas de Paneth , Animais , Camundongos , Claudina-1/genética , Claudina-1/metabolismo , Colite/genética , Colite/metabolismo , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , MicroRNAs/metabolismo
5.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214222

RESUMO

Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.


Assuntos
Proteínas CELF1 , Colite , Homeostase , Mucosa Intestinal , RNA Longo não Codificante , Cicatrização , Animais , Apoptose , Proteínas CELF1/genética , Proteínas CELF1/imunologia , Colite/genética , Colite/imunologia , Homeostase/genética , Homeostase/imunologia , Mucosa Intestinal/imunologia , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Cicatrização/genética , Cicatrização/imunologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/imunologia
6.
Am J Physiol Cell Physiol ; 322(4): C712-C722, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235424

RESUMO

Early gut epithelial restitution reseals superficial wounds after acute injury, but the exact mechanism underlying this rapid mucosal repair remains largely unknown. MicroRNA-195 (miR-195) is highly expressed in the gut epithelium and involved in many aspects of mucosal pathobiology. Actin-related proteins (ARPs) are key components essential for stimulation of actin polymerization and regulate cell motility. Here, we reported that miR-195 modulates early intestinal epithelial restitution by altering ARP-2 expression at the translation level. miR-195 directly interacted with the ARP-2 mRNA, and ectopically expressed miR-195 decreased ARP-2 protein without effect on its mRNA content. In contrast, miR-195 silencing by transfection with anti-miR-195 oligo increased ARP-2 expression. Decreased ARP-2 levels by miR-195 overexpression were associated with an inhibition of early epithelial restitution, as indicated by a decrease in cell migration over the wounded area. Elevation of cellular ARP-2 levels by transfection with its transgene restored cell migration after wounding in cells overexpressing miR-195. Polyamines were found to decrease miR-195 abundance and enhanced ARP-2 translation, thus promoting epithelial restitution after wounding. Moreover, increasing the levels of miR-195 disrupted F-actin cytoskeleton organization, which was prevented by ARP2 overexpression. These results indicate that miR-195 inhibits early epithelial restitution by decreasing ARP-2 translation and that miR-195 expression is negatively regulated by cellular polyamines.


Assuntos
Mucosa Intestinal , MicroRNAs , Proteína 2 Relacionada a Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Movimento Celular/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Poliaminas/metabolismo , RNA Mensageiro/metabolismo , Cicatrização/genética
7.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34747371

RESUMO

Patients with diabetes with coronary microvascular disease (CMD) exhibit higher cardiac mortality than patients without CMD. However, the molecular mechanism by which diabetes promotes CMD is poorly understood. RNA-binding protein human antigen R (HuR) is a key regulator of mRNA stability and translation; therefore, we investigated the role of HuR in the development of CMD in mice with type 2 diabetes. Diabetic mice exhibited decreases in coronary flow velocity reserve (CFVR; a determinant of coronary microvascular function) and capillary density in the left ventricle. HuR levels in cardiac endothelial cells (CECs) were significantly lower in diabetic mice and patients with diabetes than the controls. Endothelial-specific HuR-KO mice also displayed significant reductions in CFVR and capillary density. By examining mRNA levels of 92 genes associated with endothelial function, we found that HuR, Cx40, and Nox4 levels were decreased in CECs from diabetic and HuR-KO mice compared with control mice. Cx40 expression and HuR binding to Cx40 mRNA were downregulated in CECs from diabetic mice. Cx40-KO mice exhibited decreased CFVR and capillary density, whereas endothelium-specific Cx40 overexpression increased capillary density and improved CFVR in diabetic mice. These data suggest that decreased HuR contributes to the development of CMD in diabetes through downregulation of gap junction protein Cx40 in CECs.


Assuntos
Conexinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Animais , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Masculino , Camundongos
8.
Gastroenterology ; 161(4): 1303-1317.e3, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34116030

RESUMO

BACKGROUND & AIMS: Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed circles. Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. We surveyed circRNAs required to maintain intestinal epithelial integrity and identified circular homeodomain-interacting protein kinase 3 (circHIPK3) as a major regulator of intestinal epithelial repair after acute injury. METHODS: Intestinal mucosal tissues were collected from mice exposed to cecal ligation and puncture for 48 hours and patients with inflammatory bowel diseases and sepsis. We isolated primary enterocytes from the small intestine of mice and derived intestinal organoids. The levels of circHIPK3 were silenced in intestinal epithelial cells (IECs) by transfection with small interfering RNAs targeting the circularization junction of circHIPK3 or elevated using a plasmid vector that overexpressed circHIPK3. Intestinal epithelial repair was examined in an in vitro injury model by removing part of the monolayer. The association of circHIPK3 with microRNA 29b (miR-29b) was determined by biotinylated RNA pull-down assays. RESULTS: Genome-wide profile analyses identified ∼300 circRNAs, including circHIPK3, differentially expressed in the intestinal mucosa of mice after cecal ligation and puncture relative to sham mice. Intestinal mucosa from patients with inflammatory bowel diseases and sepsis had reduced levels of circHIPK3. Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. Mechanistic studies revealed that circHIPK3 directly bound to miR-29b and inhibited miR-29 activity, thus increasing expression of Rac1, Cdc42, and cyclin B1 in IECs after wounding. CONCLUSIONS: In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability.


Assuntos
Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Sepse/metabolismo , Animais , Células Cultivadas , Ciclina B1/genética , Ciclina B1/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/patologia , Feminino , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , RNA Circular/genética , Sepse/genética , Sepse/patologia , Cicatrização , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Physiol Rep ; 9(9): e14864, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33991460

RESUMO

Gut epithelial restitution after superficial wounding is an important repair modality regulated by numerous factors including Ca2+ signaling and cellular polyamines. Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs) and its activation increases epithelial restitution by inducing Ca2+ influx after acute injury. α4 is a multiple functional protein and implicated in many aspects of cell functions by modulating protein phosphatase 2A (PP2A) stability and activity. Here we show that the clonal populations of IECs stably expressing TRPC1 (IEC-TRPC1) exhibited increased levels of α4 and PP2A catalytic subunit (PP2Ac) and that TRPC1 promoted intestinal epithelial restitution by increasing α4/PP2Ac association. The levels of α4 and PP2Ac proteins increased significantly in stable IEC-TRPC1 cells and this induction in α4/PP2Ac complexes was accompanied by an increase in IEC migration after wounding. α4 silencing by transfection with siRNA targeting α4 (siα4) or PP2Ac silencing destabilized α4/PP2Ac complexes in stable IEC-TRPC1 cells and repressed cell migration over the wounded area. Increasing the levels of cellular polyamines by stable transfection with the Odc gene stimulated α4 and PP2Ac expression and enhanced their association, thus also promoting epithelial restitution after wounding. In contrast, depletion of cellular polyamines by treatment with α-difluoromethylornithine reduced α4/PP2Ac complexes and repressed cell migration. Ectopic overexpression of α4 partially rescued rapid epithelial repair in polyamine-deficient cells. These results indicate that activation of TRPC1-mediated Ca2+ signaling enhances cell migration primarily by increasing α4/PP2Ac associations after wounding and this pathway is tightly regulated by cellular polyamines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sinalização do Cálcio , Enterócitos/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Fosfatase 2/metabolismo , Canais de Cátion TRPC/metabolismo , Cicatrização , Animais , Linhagem Celular , Movimento Celular , Poliaminas/metabolismo , Ratos
10.
Am J Physiol Cell Physiol ; 320(6): C1042-C1054, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788631

RESUMO

Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.


Assuntos
Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Quinases Semelhantes a Duplacortina , Enterócitos/metabolismo , Feminino , Células Caliciformes/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides/metabolismo
11.
Tissue Barriers ; 9(2): 1895648, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709880

RESUMO

The intestinal autophagy and barrier function are crucial for maintaining the epithelium homeostasis and tightly regulated through well-controlled mechanisms. RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) modulate gene expression at the posttranscription level and are intimately involved in different physiological processes and diverse human diseases. In this review, we first highlight the roles of several RBPs and lncRNAs in the regulation of intestinal epithelial autophagy and barrier function, particularly focusing on the emerging evidence of RBPs and lncRNAs in the control of mRNA stability and translation. We additionally discuss recent findings that the interactions between RBPs and lncRNAs alter the fate of their target transcripts and thus influence gut epithelium host defense in response to stressful environments. These exciting advances in understanding the posttranscriptional control of the epithelial autophagy and barrier function by RBPs and lncRNAs provide a strong rationale for developing new effective therapeutics based on targeting RBPs and/or lncRNAs to preserve the intestinal epithelial integrity in patients with critical illnesses.


Assuntos
Intestinos/fisiopatologia , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Autofagia , Humanos , Camundongos
12.
Physiology (Bethesda) ; 35(5): 328-337, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783609

RESUMO

Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.


Assuntos
Proliferação de Células , Autorrenovação Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Poliaminas/metabolismo , Animais , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia , Permeabilidade , Transdução de Sinais
13.
Am J Physiol Cell Physiol ; 319(1): C208-C217, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432928

RESUMO

Homeostasis of the intestinal epithelium is tightly regulated by numerous extracellular and intracellular factors including vitamin D and the vitamin D receptor (VDR). VDR is highly expressed in the intestinal epithelium and is implicated in many aspects of gut mucosal pathophysiology, but the exact mechanism that controls VDR expression remains largely unknown. The RNA-binding protein human antigen R (HuR) regulates the stability and translation of target mRNAs and thus modulates various cellular processes and functions. Here we report a novel role of HuR in the posttranscriptional control of VDR expression in the intestinal epithelium. The levels of VDR in the intestinal mucosa decreased significantly in mice with ablated HuR, compared with control mice. HuR silencing in cultured intestinal epithelial cells (IECs) also reduced VDR levels, whereas HuR overexpression increased VDR abundance; neither intervention changed cellular Vdr mRNA content. Mechanistically, HuR bound to Vdr mRNA via its 3'-untranslated region (UTR) and enhanced VDR translation in IECs. Moreover, VDR silencing not only inhibited IEC migration over the wounded area in control cells but also prevented the increased migration in cells overexpressing HuR, although it did not alter IEC proliferation in vitro and growth of intestinal organoids ex vivo. The human intestinal mucosa from patients with inflammatory bowel diseases exhibited decreased levels of both HuR and VDR. These results indicate that HuR enhances VDR translation by directly interacting with its mRNA via 3'-UTR and that induced VDR by HuR is crucial for rapid intestinal epithelial restitution after wounding.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Biossíntese de Proteínas/fisiologia , Receptores de Calcitriol/metabolismo , Animais , Proteína Semelhante a ELAV 1/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides/lesões , Organoides/metabolismo , Ratos , Receptores de Calcitriol/genética
14.
Mol Cell Biol ; 40(6)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31932481

RESUMO

Intestinal epithelial autophagy is crucial for host defense against invasive pathogens, and defects in this process occur frequently in patients with inflammatory bowel disease (IBD) and other mucosal disorders, but the exact mechanism that activates autophagy is poorly defined. Here, we investigated the role of RNA-binding protein HuR (human antigen R) in the posttranscriptional control of autophagy-related genes (ATGs) in the intestinal epithelium. We found that targeted deletion of HuR in intestinal epithelial cells (IECs) specifically decreased the levels of ATG16L1 in the intestinal mucosa. Intestinal mucosa from patients with IBD exhibited reduced levels of both HuR and ATG16L1. HuR directly interacted with Atg16l1 mRNA via its 3' untranslated region and enhanced ATG16L1 translation, without affecting Atg16l1 mRNA stability. Circular RNA circPABPN1 blocked HuR binding to Atg16l1 mRNA and lowered ATG16L1 production. HuR silencing in cultured IECs also prevented rapamycin-induced autophagy, which was abolished by overexpressing ATG16L1. These findings indicate that HuR regulates autophagy by modulating ATG16L1 translation via interaction with circPABPN1 in the intestinal epithelium.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Proteína Semelhante a ELAV 1/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Autofagia/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas/genética
15.
Cell Mol Gastroenterol Hepatol ; 8(3): 475-486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31195150

RESUMO

BACKGROUND & AIMS: The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is tightly regulated via well-controlled mechanisms. The RNA-binding protein HuR is essential for maintaining gut epithelial integrity, and targeted deletion of HuR in intestinal epithelial cells (IECs) disrupts mucosal regeneration and delays repair after injury. Here, we defined the role of HuR in regulating subcellular distribution of small guanosine triphosphatase Rac1 and investigated the implication of nucleophosmin (NPM) as a molecular chaperone in this process. METHODS: Studies were conducted in intestinal epithelial tissue-specific HuR knockout (IE-HuR-/-) mice and cultured IEC-6 cells, derived from rat small intestinal crypts. Functions of HuR and NPM in vitro were investigated via their gene silencing and overexpression. RESULTS: The abundance of cytoplasmic Rac1 in the small intestinal mucosa increased significantly in IE-HuR-/- mice, although HuR deletion did not alter total Rac1 levels. HuR silencing in cultured IECs also increased the cytoplasmic Rac1 levels, without an effect on whole-cell Rac1 content. In addition, HuR deficiency in the intestinal epithelium decreased the levels of NPM in IE-HuR-/- mice and cultured IECs. NPM physically interacted with Rac1 and formed the NPM/Rac1 complex. NPM silencing decreased the NPM/Rac1 association and inhibited nuclear accumulation of Rac1, along with an increase in cytoplasmic abundances of Rac1. In contrast, ectopically expressed NPM enhanced Rac1 nuclear translocation and restored Rac1 subcellular localization to near normal in HuR-deficient cells. CONCLUSIONS: These results indicate that HuR regulates Rac1 nucleocytoplasmic shuttling in the intestinal epithelium by altering NPM expression.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Mucosa Intestinal/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células CACO-2 , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Camundongos , Nucleofosmina , Transporte Proteico , Ratos
16.
Gastroenterology ; 157(3): 731-743, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103627

RESUMO

BACKGROUND & AIMS: Paneth cells secrete antimicrobial proteins including lysozyme via secretory autophagy as part of the mucosal protective response. The ELAV like RNA-binding protein 1 (ELAVL1, also called HuR) regulates stability and translation of messenger RNAs (mRNAs) and many aspects of mucosal physiology. We studied the posttranscriptional mechanisms by which HuR regulates Paneth cell function. METHODS: Intestinal mucosal tissues were collected from mice with intestinal epithelium (IE)-specific disruption of HuR (IE-HuR-/-), HuRfl/fl-Cre- mice (controls), and patients with inflammatory bowel diseases and analyzed by histology and immunohistochemistry. Paneth cell functions were determined by lysozyme-immunostaining assays. We isolated primary enterocytes from IE-HuR-/- and control mice and derived intestinal organoids. HuR and the chaperone CNPY3 were overexpressed from transgenes in intestinal epithelial cells (IECs) or knocked down with small interfering RNAs. We performed RNA pulldown assays to investigate interactions between HuR and its target mRNAs. RESULTS: Intestinal tissues from IE-HuR-/- mice had reduced numbers of Paneth cells, and Paneth cells had fewer lysozyme granules per cell, compared with tissues from control mice, but there were no effects on Goblet cells or enterocytes. Intestinal mucosa from patients with inflammatory bowel diseases had reduced levels of HuR and fewer Paneth cells. IE-HuR-/- mice did not have the apical distribution of TLR2 in the intestinal mucosa as observed in control mice. IECs from IE-HuR-/- mice expressed lower levels of CNPY3. Intestinal organoids from IE-HuR-/- mice were smaller and contained fewer buds compared with those generated from controls, and had fewer lysozyme-positive cells. In IECs, knockdown of HuR decreased levels of the autophagy proteins LC3-I and LC3-II, compared with control cells, and prevented rapamycin-induced autophagy. We found HuR to interact directly with the Cnpy3 mRNA coding region and increase levels of CNPY3 by increasing the stability and translation of Cnpy3 mRNA. CNPY3 bound TLR2, and cells with knockdown of CNPY3 or HuR lost membrane localization of TLR2, but increased cytoplasmic levels of TLR2. CONCLUSIONS: In studies of mice, IECs, and human tissues, we found HuR to increase expression of CNPY3 at the posttranscriptional level. CNPY3 is required for membrane localization of TLR2 and Paneth cell function.


Assuntos
Membrana Celular/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Intestino Delgado/metabolismo , Chaperonas Moleculares/metabolismo , Celulas de Paneth/metabolismo , Processamento Pós-Transcricional do RNA , Receptor 2 Toll-Like/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Proteína Semelhante a ELAV 1/deficiência , Proteína Semelhante a ELAV 1/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Intestino Delgado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Celulas de Paneth/patologia , Transporte Proteico , Transdução de Sinais , Regulação para Cima
17.
Am J Physiol Cell Physiol ; 316(3): C415-C423, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649922

RESUMO

Both zipcode binding protein-1 (ZBP1) and phospholipase C-γ1 (PLCγ1) are intimately involved in many aspects of early intestinal mucosal repair after acute injury, but the exact mechanisms that control their cellular abundances remain largely unknown. The present study shows that microRNA-222 (miR-222) interacts with the mRNAs encoding ZBP1 and PLCγ1 and regulates ZBP1 and PLCγ1 expression in intestinal epithelial cells (IECs). The biotinylated miR-222 bound specifically to the ZBP1 and PLCγ1 mRNAs in IECs. Ectopically expressed miR-222 precursor destabilized the ZBP1 and PLCγ1 mRNAs and consequently lowered the levels of cellular ZBP1 and PLCγ1 proteins. Conversely, decreasing the levels of cellular miR-222 by transfection with its antagonism increased the stability of the ZBP1 and PLCγ1 mRNAs and increased the levels of ZBP1 and PLCγ1 proteins. Overexpression of miR-222 also inhibited cell migration over the wounded area, which was partially abolished by overexpressing ZBP1 and PLCγ1. Furthermore, prevention of the increased levels of ZBP1 and PLCγ1 in the miR-222-silenced cells by transfection with specific small interfering RNAs targeting ZBP1 or PLCγ1 mRNA inhibited cell migration after wounding. These findings indicate that induced miR-222 represses expression of ZBP1 and PLCγ1 at the posttranscriptional level, thus inhibiting IEC migration during intestinal epithelial restitution after wounding.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Fosfolipase C gama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células HCT116 , Humanos , Intestinos/fisiologia , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Transfecção/métodos , Cicatrização/fisiologia
18.
Oncotarget ; 9(47): 28391-28407, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29983868

RESUMO

Although microRNA (miR) 199a-3p functions as a tumor suppressor in multiple malignancies, its expression and role in esophageal cancer have not been studied. Based on our previous observation that miR-199a-3p is markedly downregulated in esophageal cancer cell lines relative to esophageal epithelial cells, we examined the function of miR-199a-3p in these cells. MiR-199a-3p is predicted to bind with high affinity to the mRNA of p21 activated kinase 4 (PAK4). This kinase has been shown to be overexpressed in several malignancies and to modulate proliferation and motility. The current study is designed to determine whether miR-199a-3p regulates the expression of PAK4 in esophageal cancer cells and to understand the functional consequences of this interaction. Herein, we demonstrate reduced expression of miR-199a-3p in human esophageal cancer specimens and cell lines compared to esophageal epithelial cells, with associated increased expression of PAK4. Forced expression of miR-199a-3p decreases expression of PAK4 in esophageal cancer cell lines. Mechanistic studies reveal that miR-199a-3p binds to the 3'UTR of PAK4 mRNA. This interaction results in reduced levels of PAK4 mRNA due to decreased mRNA stability. Downregulation of PAK4 leads to decreased cyclin D1 (CD1) transcription and protein expression, resulting in markedly impaired cellular proliferation. When PAK4 expression is rescued, both CD1 transcription and protein return to baseline levels. Our results show that miR-199a-3p functions as a tumor suppressor in esophageal cancer cells through repression of PAK4. These findings suggest that both miR-199a-3p and PAK4 may be novel therapeutic targets in the treatment of esophageal cancer.

19.
Mol Cell Biol ; 38(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632078

RESUMO

The mammalian intestinal epithelium establishes a selectively permeable barrier that supports nutrient absorption and prevents intrusion by noxious luminal substances and microbiota. The effectiveness and integrity of the barrier function are tightly regulated via well-controlled mechanisms. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control diverse cellular processes, but their roles in the regulation of gut permeability remain largely unknown. Here we report that the T-UCR uc.173 enhances intestinal epithelial barrier function by antagonizing microRNA 29b (miR-29b). Decreasing the levels of uc.173 by gene silencing led to dysfunction of the intestinal epithelial barrier in cultured cells and increased the vulnerability of the gut barrier to septic stress in mice. uc.173 specifically stimulated translation of the tight junction (TJ) claudin-1 (CLDN1) by associating with miR-29b rather than by binding directly to CLDN1 mRNA. uc.173 acted as a natural decoy RNA for miR-29b, which interacts with CLDN1 mRNA via the 3' untranslated region and represses its translation. Ectopically expressed uc.173 abolished the association of miR-29b with CLDN1 mRNA and restored claudin-1 expression to normal levels in cells overexpressing miR-29b, thus rescuing the barrier function. These results highlight a novel function of uc.173 in controlling gut permeability and define a mechanism by which uc.173 stimulates claudin-1 translation, by decreasing the availability of miR-29b to CLDN1 mRNA.


Assuntos
Mucosa Intestinal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regiões 3' não Traduzidas , Junções Aderentes/metabolismo , Animais , Células CACO-2 , Claudina-1/genética , Claudina-1/metabolismo , Sequência Conservada , Feminino , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Junções Íntimas/metabolismo
20.
Mol Cell Biol ; 38(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555726

RESUMO

The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis depends on a dynamic balance among proliferation, migration, apoptosis, and differentiation of intestinal epithelial cells (IECs). The protein phosphatase 2A (PP2A)-associated protein α4 controls the activity and specificity of serine/threonine phosphatases and is thus implicated in many cellular processes. Here, using a genetic approach, we investigated the mechanisms whereby α4 controls the homeostasis of the intestinal epithelium. In mice with ablated α4, the small intestinal mucosa exhibited crypt hyperplasia, villus shrinkage, defective differentiation of Paneth cells, and reduced IEC migration along the crypt-villus axis. The α4-deficient intestinal epithelium also displayed decreased expression of different intercellular junction proteins and abnormal epithelial permeability. In addition, α4 deficiency decreased the levels of the RNA-binding protein HuR in the mucosal tissue. In cultured IECs, ectopic overexpression of HuR in α4-deficient cells rescued the production of these intercellular junction proteins and restored the epithelial barrier function to a nearly normal level. Mechanistically, α4 silencing destabilized HuR through a process involving HuR phosphorylation by IκB kinase α, leading to ubiquitin-mediated proteolysis of HuR. These findings indicate that the critical impact of α4 upon the barrier function and homeostasis of the intestinal epithelium depends largely on its ability to regulate the stability of HuR.


Assuntos
Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Homeostase/fisiologia , Mucosa Intestinal/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Homeostase/genética , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA