Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(15): 8233-8247, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557050

RESUMO

Molybdenum disulfide (MoS2) demonstrates promising applications in enhancing the corrosion and wear resistance of metals, but the susceptibility of this nanomaterial to agglomeration hinders its overall performance. In this study, the externally assisted corrosion inhibitor sodium molybdate (SM) was successfully constructed in diatomaceous earth (DE) and molybdenum disulfide (MoS2). This not only served as a molybdenum source for MoS2 but also enabled the preparation of DE@MoS2-SM microcapsules, achieving a corrosion inhibitor loading of up to 23.23%. The corrosion testing reveals that the composite coating, when compared to the pure epoxy coating, exhibits an impedance modulus 2 orders of magnitude higher (1.80 × 109 Ω·cm2), offering prolonged protection for magnesium alloys over a 40 day period. Furthermore, a filler content of 3% sustains a coefficient of friction (COF) at 0.55 for an extended duration, indicating commendable stability and wear resistance. The protective performance is ascribed to the synergistic enhancement of corrosion and wear resistance in the coatings, facilitated by the pore structure of DE, the high hardness of MoS2, and the obstructive influence of Na2MoO4. This approach offers a straightforward and efficient means of designing microcapsules for use in corrosive environments, whose application can be extended in industrial fields. In particular, we promote the application of nautical instruments, underwater weapons, and seawater batteries in the shipbuilding industry and marine engineering.

2.
Nanoscale ; 16(1): 474-487, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086669

RESUMO

Vacancy engineering offers an appealing strategy for modifying the electronic structure of transition metals. Transition metals with abundant sulfur vacancies can significantly contribute to the microwave absorption capabilities of absorbers. In this study, an NixSy@De composite material was synthesized through a straightforward hydrothermal synthesis technique. The effective absorption bandwidth (EAB) of this composite material reached 9.86 GHz at 1.44 mm. A minimum reflection loss (RLmin) of -33.61 dB at 1 mm was achieved, and after mild etching, the RLmin further improved to -93.53 dB at 1.16 mm to achieve a high-attenuation microwave absorption. The exceptional performance of NixSy@De for the absorption of electromagnetic waves (EMWs) is based on its high dielectric loss, substantial magnetic loss, and excellent impedance matching. This work combines transition metal sulfides with three-dimensional biotemplated diatomite, providing valuable insights into the design of advanced EMW absorbing materials.

3.
J Colloid Interface Sci ; 646: 991-1001, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245268

RESUMO

It is a novel and practical method to use natural porous biomaterials as microwave absorber. In this study, NixCo1S nanowires (NWs)@diatomite (De) composites with one-dimensional (1D)-NWs and three-dimensional(3D)-De composites were prepared by a two-step hydrothermal method using De as template. The effective absorption bandwidth (EAB) of the composite reaches 6.16 GHz at 1.6 mm and 7.04 GHz at 4.1 mm, covering the entire Ku band, and the minimum reflection loss (RLmin) is less than -30 dB. The excellent absorption performance is mainly due to the bulk charge modulation provided by the 1D NWs and the extended microwave transmission path within the absorber, coupled with the high dielectric loss and magnetic loss of the metal-NWS after vulcanization. We present a high-value method that combines vulcanized 1D materials with abundant De to achieve the lightweight broadband efficient microwave absorption at the first time.

4.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012621

RESUMO

A neoteric round sieve diatomite (De) decorated with sea-urchin-like alpha-type iron trioxide (α-Fe2O3) synthetics was prepared by the hydrothermal method and further calcination. The results of the electromagnetic (EM) parameters of α-Fe2O3-decorated De (α-Fe2O3@D) showed that the minimum reflection loss (RLmin) of α-Fe2O3@D could reach -54.2 dB at 11.52 GHz and the matched absorber thickness was 3 mm. The frequency bandwidth corresponding to the microwave RL value below -20 dB was up to 8.24 GHz (9.76-18 GHz). This indicates that α-Fe2O3@D composite can be a lightweight and stable material; because of the low density of De (1.9-2.3 g/cm3), the density of α-Fe2O3@D composite material is lower than that of α-Fe2O3 (5.18 g/cm3). We found that the combination of the magnetic loss of sea-urchin-like α-Fe2O3 and the dielectric loss of De has the most dominant role in electromagnetic wave absorption and loss. We focused on comparing the absorbing properties before and after the formation of sea-urchin-like α-Fe2O3 and explain in detail the effects of the structure and crystal shape of this novel composite on the absorbing properties.


Assuntos
Micro-Ondas , Terra de Diatomáceas
5.
J Colloid Interface Sci ; 628(Pt A): 769-783, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961245

RESUMO

Design and fabrication of core-shell nanomaterials with excellent properties such as multifunctionality, tunability, and stability for the removal of recalcitrant pollutants from wastewater is highly valued. In this work, magnetic MnO2@NiFe@DE nanocomposites with double-core@shell structures were obtained via a two-step hydrothermal method for efficiently removing tetracycline, anionic and cationic dyes through the synergistic effect of oxidation and adsorption. The novel nanomaterial displayed superior removal of methyl orange, methylene blue, and tetracycline in low pH solutions with 100%, 100%, and 83%, respectively. The effects of solution pH, adsorption time, and contaminant concentration on the performance of the nanocomposite were also investigated, and the pseudo-second-order kinetic model well described the data. Physical adsorption including electrostatic adsorption, anion exchange, and hydrogen bonding are the predominant mechanisms for contaminant removal. The oxidation mechanism is mainly hydroxyl radical action. Through the use of permanent magnets, the recovery process of the adsorbent and the adsorbed dyes and antibiotics is energetically and economically sustainable. This as-synthesized nanocomposite as multifunction material has a high removal rate, low cost, and easy separation, and the applicability in treating the solutions with low pH, which is promised to be an efficient organic wastewater remover in practical applications.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Ânions , Antibacterianos , Cátions , Corantes/química , Radical Hidroxila , Fenômenos Magnéticos , Compostos de Manganês , Azul de Metileno/química , Óxidos , Tetraciclina , Águas Residuárias , Poluentes Químicos da Água/química
6.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897949

RESUMO

Reasonable structural design and composition control are the dominant factors for tuning the electromagnetic absorbing properties of materials. In this paper, microspheres composed of NiO, Ni, and Co3O4 nanoparticles (NCMO) were successfully synthesized using a mild oxidation method. Benefiting from the multi-component composition and a unique microstructure, the RLmin of CNMO can reach -46.8 dB at 17 GHz, with an effective absorption bandwidth of 4.1 GHz (13.9-18 GHz). The absorbing properties and the absorbing mechanism analysis showed that the microsphere-structured NCMO composed of multi-component nanoparticles enhanced the interface polarization, thereby improving the absorption performance. This research provides a new avenue for MOF-derived oxide materials with excellent electromagnetic wave absorbing properties.

7.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744883

RESUMO

Considering the electromagnetic protection needs of important ground buildings, exploring the electromagnetic wave (EMW) absorption performance of manganese ore powder (MOP) building materials is an effective way to overcome its low added value and difficulty in popularizing. Here, choosing filling ratios commonly used in building materials such as autoclaved bricks, MOP/paraffin samples with 20%, 40%, and 60% mass fraction of MOP were prepared, and electromagnetic properties were analyzed at 2−18 GHz using the coaxial method. The results show that 60 wt% sample has the best absorption performance, with a minimum reflection loss (RLmin) value of −22.06 dB at 15.04 GHz, and the effective absorption bandwidth (EAB, RL < −10 dB) reaches 4.16 GHz at a 7.65 mm absorber thickness, covering most of the Ku-band region. The excellent microwave absorption performance of MOP is due to its multi-oxide forming multi-interface structure and rough surface, which can not only form abundant dipole and interfacial polarization under the action of EMW, but also reflect and scatter the incident EMW, prolong the transmission path, and enhanced the absorption of microwaves. This study demonstrates that MOP building materials can have excellent microwave absorption properties, thus becoming a new way to address harmful manganese residue; for example, autoclaved bricks, which can not only improve the added value of manganese residue building materials but also can be consumed on a large scale. It provides a new idea to solve the harm of manganese residue.


Assuntos
Manganês , Micro-Ondas , Pós , Dióxido de Silício
8.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613944

RESUMO

In this work, a novel core-shell structure material, NiFe layered double hydroxide (NiFe LDH) loaded on SiO2 microspheres (SiO2@NiFe LDH), was synthesized by a one-step hydrothermal method, and the spontaneous electrostatic self-assembly process. The morphology, structure, and microwave absorption properties of SiO2@NiFe LDH nanocomposites with different NiFe element ratios were systematically investigated. The results show that the sample of SiO2@NiFe LDH-3 nanocomposite has excellent microwave absorption properties. It exhibits broadband effective absorption bandwidth (RL < −10 dB) of 8.24 GHz (from 9.76 GHz to 18.0 GHz) and the reflection loss is −53.78 dB at the matched thickness of 6.95 mm. It is expected that this SiO2@NiFe-LDH core-shell structural material can be used as a promising non-precious, metal-based material microwave absorber to eliminate electromagnetic wave contamination.


Assuntos
Absorção de Radiação , Dióxido de Silício , Contaminação de Medicamentos , Microesferas , Micro-Ondas
9.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615427

RESUMO

Recently, the development of composite materials composed of magnetic materials and MXene has attracted significant attention. However, the thickness and microwave absorption performance of the composite is still barely satisfactory. In this work, the C-N@NiFe2O4@MXene/Ni nanocomposites were successfully synthesized in situ by hydrothermal and calcination methods. Benefiting from the introduction of the carbon-nitrogen(C-N) network structure, the overall dielectric properties are improved effectively, consequently reducing the thickness of the composite while maintaining excellent absorption performance. As a result, the minimum reflection loss of C-N@NiFe2O4@MXene/Ni can reach -50.51 dB at 17.3 GHz at an ultralow thickness of 1.5 mm, with an effective absorption bandwidth of 4.95 GHz (13.02-18 GHz). This research provides a novel strategy for materials to maintain good absorption performance at an ultralow thickness level.

10.
Materials (Basel) ; 14(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34683818

RESUMO

The effects of three pyridine derivative additives, 4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine, on Al-Mn coatings were investigated in 1-ethyl-3-methylimidazolium chloride-AlCl3-MnCl2 (EMIC-AlCl3-MnCl2) ionic liquids. The smooth mirror-like bright Al-Mn coatings were obtained only in the EMIC-AlCl3-MnCl2 ionic liquids containing 4-cyanopyridine, while the matte Al-Mn coatings were electrodeposited from EMIC-AlCl3-MnCl2 without additives or containing either 4-hydroxypyridine or 4-picolinic acid. The scanning electron microscope and X-ray diffraction showed that the bright Al-Mn coatings consisted of nanocrystals and had a strong (200) preferential orientation, while the particle size of matte Al-Mn coatings were within the micron range. The brightening mechanism of 4-cyanopyridine is due to it being adsorbed onto the cathode to produce the combined effect of (1) generating an overpotential to promote Al-Mn nucleation; (2) inhibiting the growth of the deposited nuclei and enabling them grow preferentially, making the coating composed of nanocrystals and with a smooth surface. The brightening effect of 4-cyanopyridine on the Al-Mn coatings was far better than that of the 4-hydroxypyridine and the 4-picolinic acid. In addition, the bright Al-Mn coating was prepared in a bath with 6 mmol·L-1 4-cyanopyridine and displayed superior corrosion resistance relative to the matte coatings, which could be attributed to its unique nanocrystalline structure that increased the number of grain boundaries and accelerated the formation of the protective layer of the corrosion products.

11.
J Colloid Interface Sci ; 603: 799-809, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34246089

RESUMO

Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.

12.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925944

RESUMO

Montmorillonite (Mt) is a kind of 2:1 type layered phyllosilicate mineral with nanoscale structure, large surface area, high cation exchange capacity and excellent adsorption capacity. By virtue of such unique properties, many scholars have paid much attention to the further modification of Mt-based two-dimensional (2D) functional composite materials, such as Mt-metal hydroxides and Mt-carbon composites. In this review, we focus on two typical Mt-2D nanocomposite: Mt@layered double hydroxide (Mt@LDH) and Mt@graphene (Mt@GR) and their fabrication strategies, as well as their important applications in pollution adsorption, medical antibacterial, film thermal conduction and flame-retardant. In principle, the prospective trend of the composite preparation of Mt-2D nancomposites and promising fields are well addressed.

13.
RSC Adv ; 11(61): 38505-38514, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493253

RESUMO

In this work, a diatomite@graphene@ZnO (ZGD) photocatalyst was synthesized by chemical vapor deposition and hydrothermal methods and used for the photocatalytic degradation of methylene blue. The characterization of the prepared nanocomposite was performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and N2 adsorption-desorption techniques. Ultraviolet-visible diffuse reflectance spectroscopy (DRS) showed that the prepared ZGD photocatalyst enhanced the absorption of visible light and induced a red-shift. Photoluminescence spectroscopy (PL) revealed that the recombination of electron and hole pairs can be effectively suppressed. Besides, the synergistic effect of diatomite and graphene avoids the agglomeration of ZnO, increases the number of surface adsorption sites, and limits the electron transport, consequently improving the photocatalytic activity of ZnO. When ZGD-3 was UV-irradiated (λ = 663 nm) for 90 minutes, the degradation effectiveness of methylene blue (MB) was 100%. After the fifth repetition, the photocatalytic degradation efficiency was always greater than 95%. Simply put, the ZGD nanocatalyst can be used as an efficient photocatalyst for dye wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA