Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2674: 55-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258959

RESUMO

Bacterial extracellular vesicles (EVs) contain numerous active substances that mediate bacterial interactions with their host and with other microbes. Best defined are the EVs from Gram-negative bacteria that have been shown to deliver virulence factors, modulate the immune responses, mediate antibiotic resistance, and also inhibit competitive microbes. Due to the complex cell wall structures of Gram-positive bacteria and mycobacteria, EVs from these bacteria were only recently reported. This protocol describes the isolation of EVs from mycobacteria.


Assuntos
Vesículas Extracelulares , Mycobacterium , Mycobacterium/fisiologia , Bactérias Gram-Positivas , Fatores de Virulência/análise , Vesículas Extracelulares/química
2.
Pharmaceutics ; 15(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36839864

RESUMO

Multidrug-resistant tuberculosis (MDR) continues to pose a threat to public health. Previously, we identified a cationic host defense peptide with activity against Mycobacterium tuberculosis in vivo and with a bactericidal effect against MDR M. tuberculosis at therapeutic concentrations. To understand the mechanisms of this peptide, we investigated its interactions with live M. tuberculosis and liposomes as a model. Peptide interactions with M. tuberculosis inner membranes induced tube-shaped membranous structures and massive vesicle formation, thus leading to bubbling cell death and ghost cell formation. Liposomal studies revealed that peptide insertion into inner membranes induced changes in the peptides' secondary structure and that the membranes were pulled such that they aggregated without permeabilization, suggesting that the peptide has a strong inner membrane affinity. Finally, the peptide targeted essential proteins in M. tuberculosis, such as 60 kDa chaperonins and elongation factor Tu, that are involved in mycolic acid synthesis and protein folding, which had an impact on bacterial proliferation. The observed multifaceted targeting provides additional support for the therapeutic potential of this peptide.

3.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951590

RESUMO

Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.


Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms need tiny amounts for their cells to work properly. As a result, proteins studded through the cell membrane act as gatekeepers to finetune import and export. These proteins are central to health and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other organisms. Despite their importance, little is known about some of these metal-export proteins. This is particularly the case for PIB-4-ATPases, a subclass found in plants and bacteria and which includes, for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of the three-dimensional structure of these proteins would help to understand how they select metals, shuttle the compounds in and out of cells, and are controlled by other cellular processes. To reveal this three-dimensional organisation, Grønberg et al. used X-ray diffraction, where high-energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused on a type of PIB-4-ATPases found in bacteria as an example. The work showed that the protein does not contain the metal-binding regions seen in other classes of metal exporters; however, it sports unique features that are crucial for metal transport such as an adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grønberg et al. tested thousands of compounds to see if they could block the activity of the protein, identifying two that could kill bacteria. This better understanding of how PIB-4-ATPases work could help to engineer plants capable of removing heavy metals from contaminated soils, as well as uncover new compounds to be used as antibiotics.


Assuntos
Íons/metabolismo , Metais Pesados/metabolismo , ATPases do Tipo-P/química , ATPases do Tipo-P/metabolismo , Rhodobacteraceae/enzimologia , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Modelos Moleculares , ATPases do Tipo-P/classificação , Conformação Proteica , Rhodobacteraceae/classificação , Zinco/metabolismo
4.
Sci Rep ; 11(1): 4201, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603037

RESUMO

Alternative ways to prevent and treat infectious diseases are needed. Previously, we identified a fungal peptide, NZX, that was comparable to rifampicin in lowering M. tuberculosis load in a murine tuberculosis (TB) infection model. Here we assessed the potential synergy between this cationic host defence peptide (CHDP) and the current TB drugs and analysed its pharmacokinetics. We found additive effect of this peptide with isoniazid and ethambutol and confirmed these results with ethambutol in a murine TB-model. In vivo, the peptide remained stable in circulation and preserved lung structure better than ethambutol alone. Antibiotic resistance studies did not induce mutants with reduced susceptibility to the peptide. We further observed that this peptide was effective against nontuberculous mycobacteria (NTM), such as M. avium and M. abscessus, and several Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. In conclusion, the presented data supports a role for this CHDP in the treatment of drug resistant organisms.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Tuberculose/tratamento farmacológico , Animais , Etambutol/farmacologia , Feminino , Humanos , Isoniazida/farmacologia , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Infecções por Mycobacterium não Tuberculosas/dietoterapia , Mycobacterium tuberculosis/efeitos dos fármacos , Micobactérias não Tuberculosas/efeitos dos fármacos , Rifampina/farmacologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA