Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713254

RESUMO

KEY MESSAGE: By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.


Assuntos
Mapeamento Cromossômico , Mariposas , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/parasitologia , Oryza/imunologia , Animais , Mariposas/fisiologia , Polimorfismo de Nucleotídeo Único , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genômica/métodos , Fenótipo , Multiômica
2.
3 Biotech ; 13(12): 393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953830

RESUMO

Gangavati sona (GS) is a high-yielding, fine-grain rice variety widely grown in the Tungabhadra command area in Karnataka, India; however, it is susceptible to bacterial blight (BB). Therefore, the present study was conducted to improve the GS variety for BB resistance. Three BB-resistant genes (xa5, xa13, and Xa21) were introgressed into the genetic background of susceptible cultivar GS through marker-assisted backcrossing (MABB) by using Improved samba Mahsuri (ISM), a popular, high-yielding, bacterial blight resistant rice variety as a donor parent. Foreground selection was carried out using gene-specific markers, viz., xa5FM (xa5), xa13prom (xa13), and pTA248 (Xa21), while background selection was carried out using well-distributed 64 polymorphic microsatellite markers. The true heterozygote F1 was used as the male parent for backcrossing with GS to obtain BC1F1. The process was repeated in BC1F1 generation, and a BC2F1 plant (IGS-5-11-5) possessing all three target genes along with maximum recurrent parent genome (RPG) recovery (86.7%) was selfed to obtain BC2F2s. At BC2F2, a single triple gene homozygote plant (IGS-5-11-5-33) with 92.6% RPG recovery was identified and advanced to BC2F5 by a pedigree method. At BC2F5, the seven best entries were selected, possessing all three resistance genes with high resistance levels against bacterial blight, yield level, and grain quality features equivalent to better than GS. The improved versions of GS will immensely benefit the farmers whose fields are endemic to BB.

3.
Sci Rep ; 10(1): 21143, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273616

RESUMO

Improved-Samba-Mahsuri (ISM), a high-yielding, popular bacterial blight resistant (possessing Xa21, xa13, and xa5), fine-grain type, low glycemic index rice variety is highly sensitive to low soil phosphorus (P). We have deployed marker-assisted backcross breeding (MABB) approach for targeted transfer of Pup1, a major QTL associated with low soil P tolerance, using Swarna as a donor. A new co-dominant marker, K20-1-1, which is specific for Pup1 was designed and used for foreground selection along with functional markers specific for the bacterial blight resistance genes, Xa21, xa13, and xa5. A set of 66 polymorphic SSR marker were used for the background selection along with a pair of flanking markers for the recombination selection in backcross derived progenies and in BC2F2 generation, 12 plants, which are homozygous for Pup1, all the three bacterial blight resistance genes and possessing agro-morphological traits equivalent to or better than ISM were selected and selfed to produce BC2F3s. They were evaluated in plots with low soil P and normal soil P at ICAR-IIRR, Hyderabad for their low soil P tolerance, and bacterial blight resistance and superior lines were advanced to BC2F6. One of the lines, when tested at multiple locations in India was found promising under both normal as well as low soil P conditions.


Assuntos
Adaptação Fisiológica , Bactérias/patogenicidade , Produtos Agrícolas/fisiologia , Marcadores Genéticos/genética , Oryza/fisiologia , Fósforo/farmacologia , Solo/química , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Genes de Plantas , Índia , Oryza/genética , Oryza/microbiologia , Locos de Características Quantitativas
4.
Front Nutr ; 7: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318582

RESUMO

Zinc malnutrition is a major issue in developing countries where polished rice is a staple food. With the existing significant genetic variability for high zinc in polished rice, the development of biofortified rice varieties was targeted in India with support from HarvestPlus, Department of Biotechnology, and Indian Council of Agricultural Research of Government of India. Indian Institute of Rice Research (IIRR) facilitates rice varietal release through All India Coordinated Rice Improvement Project (AICRIP) and also supports rice biofortification program in India. Various germplasm sets of several national institutions were characterized at IIRR for their zinc content in brown rice using energy-dispersive X-ray fluorescence spectroscopy indicating the range of zinc to be 7.3 to 52.7 mg/kg. Evaluation of different mapping populations involving wild germplasm, landraces, and varieties for their zinc content showed the feasibility of favorable recombination of high zinc content and yield. Ninety-nine genotypes from germplasm and 344 lines from mapping populations showed zinc content of ≥28 mg/kg in polished rice meeting the target zinc content set by HarvestPlus. Through AICRIP biofortification trial constituted since 2013, 170 test entries were nominated by various national institutions until 2017, and four biofortified rice varieties were released. Only the test entry with target zinc content, yield, and quality parameters is promoted to the next year; thus, each test entry is evaluated for 3 years across 17 to 27 locations for their performance. Multilocation studies of two mapping populations and AICRIP biofortification trials indicated the zinc content to be highly influenced by environment. The bioavailability of a released biofortified rice variety, viz., DRR Dhan 45 was found to twice that of control IR64. The technology efficacy of the four released varieties developed through conventional breeding ranged from 48 to 75% with zinc intake of 38 to be 47% and 46 to 57% of the RDA for male and female, respectively. The observations from the characterization of germplasm and mapping populations for zinc content and development of national evaluation system for the release of biofortified rice varieties have been discussed in the context of the five criteria set by biofortification program.

5.
Sci Rep ; 8(1): 9200, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907833

RESUMO

With the priority of the low input sustainable rice cultivation for environment friendly agriculture, NUE of rice becomes the need of the hour. A set of 472 rice genotypes comprising landraces and breeding lines were evaluated for two seasons under field conditions with low and recommended nitrogen and >100 landraces were identified with relative higher yield under low nitrogen. Donors were identified for higher N uptake, N translocation into grains and grain yield under low N. Grains on secondary branches, N content in grain and yield appears to be the selection criterion under low N. Through association mapping, using minimum marker set of 50 rice SSR markers, 12 genomic regions were identified for yield and yield associated traits under low nitrogen. Four associated genomic regions on chromosomes 5, 7 and 10 were fine mapped and QTL for yield under low N were identified from the marker delimited regions. Three candidate genes viz., 2-oxoglutarate /malate translocator (Os05g0208000), alanine aminotransferase (Os07g0617800) and pyridoxal phosphate-dependent transferase (Os10g0189600) from QTL regions showed enhanced expression in the genotypes with promising yield under low N. Marker assisted selection using SSR markers associated with three candidate genes identified two stable breeding lines confirmed through multi-location evaluation.


Assuntos
Genoma de Planta , Genótipo , Nitrogênio/metabolismo , Oryza , Locos de Características Quantitativas , Seleção Genética , Produção Agrícola , Marcadores Genéticos , Oryza/genética , Oryza/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA