Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Comput Biol ; 26(3): 225-234, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615482

RESUMO

Deep sequencing-based genetic mapping has greatly enhanced the ability to catalog variants with plausible disease association. Confirming how these identified variants contribute to specific disease conditions, across human populations, poses the next challenge. Differential selection pressure may impact the frequency of genetic variations, and thus detection of association with disease conditions, across populations. To understand genotype to phenotype correlations, it thus becomes important to first understand the spectrum of genetic variation within a population by creating a reference map. In this study, we report the development of phase I of a new database of genetic variations called INDian EXome database (INDEX-db), from the Indian population, with an aim to establish a centralized database of integrated information. This could be useful for researchers involved in studying disease mechanisms at clinical, genetic, and cellular levels.


Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma/normas , Exoma , Estudo de Associação Genômica Ampla/normas , População/genética , Software , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Índia , Padrões de Referência , Sequenciamento do Exoma/métodos
2.
J Clin Med ; 8(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669334

RESUMO

Newborn stem cell banking began with the establishment of cord blood banks more than 25 years ago. Over the course of nearly three decades, there has been considerable evolution in the clinical application of stem cells isolated from newborn tissues. The industry now finds itself at an inflection point as personalized medicine and regenerative medicine continue to advance. In this review, we summarize our perspective on newborn stem cell banking in the context of the future potential that stem cells from perinatal tissues are likely to play in nascent applications. Specifically, we describe the relevance of newborn stem cell banking and how the cells stored can be utilized as starting material for the next generation of advanced cellular therapies and personalized medicine.

3.
Stem Cells ; 36(10): 1552-1566, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004605

RESUMO

Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.


Assuntos
Armazenamento de Sangue/métodos , Instabilidade Genômica/genética , Antígenos HLA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe II , Humanos
4.
Cytotherapy ; 20(6): 861-872, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29793831

RESUMO

BACKGROUND AIMS: We have previously reported the generation of a current Good Manufacture Practice (cGMP)-compliant induced pluripotent stem cell (iPSC) line for clinical applications. Here we show that multiple cellular products currently being considered for therapy can be generated from a single master cell bank of this or any other clinically compliant iPSC line METHODS: Using a stock at passage 20 prepared from the cGMP-compliant working cell bank (WCB), we tested differentiation into therapeutically relevant cell types of the three germ layers using standardized but generic protocols. Cells that we generated include (i) neural stem cells, dopaminergic neurons and astrocytes; (ii) retinal cells (retinal pigment epithelium and photoreceptors); and (iii) hepatocyte, endothelial and mesenchymal cells. To confirm that these generic protocols can also be used for other iPSC lines, we tested the reproducibility of our methodology with a second clinically compliant line RESULTS: Our results confirmed that well-characterized iPSC lines have broad potency, and, despite allelic variability, the same protocols could be used with minimal modifications with multiple qualified lines. In addition, we introduced a constitutively expressed GFP cassette in Chr13 safe harbor site using a standardized previously described method and observed no significant difference in growth and differentiation between the engineered line and the control line indicating that engineered products can be made using a standardized methodology CONCLUSIONS: We believe that our demonstration that multiple products can be made from the same WCB and that the same protocols can be used with multiple lines offers a path to a cost-effective strategy for developing cellular products from iPSC lines.


Assuntos
Engenharia Celular/métodos , Engenharia Celular/normas , Linhagem da Célula , Fidelidade a Diretrizes , Células-Tronco Pluripotentes Induzidas/citologia , Astrócitos/citologia , Astrócitos/fisiologia , Diferenciação Celular , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fidelidade a Diretrizes/normas , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Guias de Prática Clínica como Assunto/normas , Padrões de Referência , Reprodutibilidade dos Testes , Retina/citologia , Bancos de Tecidos/normas
5.
Front Med (Lausanne) ; 5: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600249

RESUMO

The discovery of reprogramming and generation of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine and opened new opportunities in cell replacement therapies. While generation of iPSCs represents a significant breakthrough, the clinical relevance of iPSCs for cell-based therapies requires generation of high-quality specialized cells through robust and reproducible directed differentiation protocols. We have recently reported manufacturing of human iPSC master cell banks (MCB) under current good manufacturing practices (cGMPs). Here, we describe the clinical potential of human iPSCs generated using this cGMP-compliant process by differentiating them into the cells from all three embryonic germ layers including ectoderm, endoderm, and mesoderm. Most importantly, we have shown that our iPSC manufacturing process and cell culture system is not biased toward a specific lineage. Following controlled induction into a specific differentiation lineage, specialized cells with morphological and cellular characteristics of neural stem cells, definitive endoderm, and cardiomyocytes were developed. We believe that these cGMP-compliant iPSCs have the potential to make various clinically relevant products suitable for cell therapy applications.

6.
Stem Cells Int ; 2016: 1750697, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382370
7.
Stem Cell Rev Rep ; 12(4): 394-420, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27283945

RESUMO

We have recently described manufacturing of human induced pluripotent stem cells (iPSC) master cell banks (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Reports, 5(4), 647-659, 2015). In this manuscript, we describe the detailed characterization of the two iPSC clones generated using this process, including whole genome sequencing (WGS), microarray, and comparative genomic hybridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibration material and with a reporter subclone and lines made by a similar process from different donors. We believe that iPSCs are likely to be used to make multiple clinical products. We further believe that the lines used as input material will be used at different sites and, given their immortal status, will be used for many years or even decades. Therefore, it will be important to develop assays to monitor the state of the cells and their drift in culture. We suggest that a detailed characterization of the initial status of the cells, a comparison with some calibration material and the development of reporter sublcones will help determine which set of tests will be most useful in monitoring the cells and establishing criteria for discarding a line.


Assuntos
Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco/métodos , Bancos de Tecidos , Antígenos CD34/sangue , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Hibridização Genômica Comparativa/métodos , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Sangue Fetal/metabolismo , Citometria de Fluxo , Expressão Gênica , Genoma Humano/genética , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Células-Tronco Pluripotentes/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
8.
PLoS One ; 11(5): e0154890, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27191603

RESUMO

We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson's disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight of these lines (one of each SNCA, LRRK2 and GBA, four PARK2 lines, and the control) were differentiated into neural stem cells (NSC) and subsequently to dopaminergic cultures. We did not observe significant differences in the timeline of neural induction and NSC derivation between the patient and control line, nor amongst the patient lines, although we report considerable variability in the efficiency of dopaminergic differentiation among patient lines. We performed whole genome expression analyses of the lines at each stage of differentiation (fibroblast, iPSC, NSC, and dopaminergic culture) in an attempt to identify alterations by large-scale evaluation. While gene expression profiling clearly distinguished cells at different stages of differentiation, no mutation-specific clustering or difference was observed, though consistent changes in patient lines were detected in genes associated mitochondrial biology. We further examined gene expression in a stress model (MPTP-induced dopaminergic neuronal death) using two clones from the SNCA triplication line, and detected changes in genes associated with mitophagy. Our data suggested that even a well-characterized line of a monogenic disease may not be sufficient to determine the cause or mechanism of the disease, and highlights the need to use more focused strategies for large-scale data analysis.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Células-Tronco Neurais/citologia , Neurogênese , Doença de Parkinson/genética , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Genoma Humano , Glucosilceramidase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mitocôndrias/metabolismo , Mitofagia , Células-Tronco Neurais/metabolismo , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/genética
9.
Stem Cells Transl Med ; 5(2): 129-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718646

RESUMO

The discovery of induced pluripotent stem cells and the ability to manufacture them using clinically compliant protocols has the potential to revolutionize the field of regenerative medicine. However, realizing this potential requires the development of processes that are reliable, reproducible, and cost-effective and that at the same time do not compromise the safety of the individuals receiving this therapy. In the present report, we discuss how cost reductions can be obtained using our experience with obtaining approval of biologic agents, autologous therapy, and the recent approval of cord blood banks. Significance: For therapy to be widely available, the cost of manufacturing stem cells must be reduced. The steps proposed in the present report, when implemented, have the potential to reduce these costs significantly.


Assuntos
Análise Custo-Benefício , Células-Tronco Pluripotentes Induzidas/transplante , Medicina Regenerativa/economia , Transplante de Células-Tronco , Bancos de Sangue/economia , Bancos de Sangue/legislação & jurisprudência , Sangue Fetal/transplante , Humanos , Vigilância de Produtos Comercializados , Medicina Regenerativa/legislação & jurisprudência , Medicina Regenerativa/métodos , Estados Unidos , United States Food and Drug Administration
10.
Brain Res ; 1638(Pt A): 57-73, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26254731

RESUMO

Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here, we report on the comparative cytotoxicity of 80 compounds (neurotoxicants, developmental neurotoxicants, and environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC), neurons, and astrocytes. All compounds were tested over a 24-h period at 10 and 100 µM, in duplicate, with cytotoxicity measured using the MTT assay. Of the 80 compounds tested, 50 induced significant cytotoxicity in at least one cell type; per cell type, 32, 38, 46, and 41 induced significant cytotoxicity in iPSC, NSC, neurons, and astrocytes, respectively. Four compounds (valinomycin, 3,3',5,5'-tetrabromobisphenol, deltamethrin, and triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1, 10, and 100 µM using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone, we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally, the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. This article is part of a Special Issue entitled SI: PSC and the brain.


Assuntos
Astrócitos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo
11.
Methods Mol Biol ; 1307: 173-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24615461

RESUMO

Genetic modification is an indispensable tool to study gene function in normal development and disease. The recent breakthrough of creating human induced pluripotent stem cells (iPSCs) by defined factors (Takahashi et al., Cell 131:861-872, 2007) provides a renewable source of patient autologous cells that not only retain identical genetic information but also give rise to many cell types of the body including neurons and glia. Meanwhile, the rapid advancement of genome modification tools such as gene targeting by homologous recombination (Capecchi, Nat Rev Genet 6:507-512, 2005) and genome editing tools such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system, TALENs (Transcription activator-like effector nucleases), and ZFNs (Zinc finger nucleases) (Wang et al., Cell 153:910-918, 2013; Mali et al., Science 339:823-826, 2013; Hwang et al., Nat Biotechnol 31:227-229, 2013; Friedland et al., Nat Methods 10(8):741-743, 2013; DiCarlo et al., Nucleic Acids Res 41:4336-4343, 2013; Cong et al., Science 339:819-823, 2013) has greatly accelerated the development of human genome manipulation at the molecular level. This chapter describes the protocols for making neural lineage reporter lines using homologous recombination and the CRISPR/Cas system-mediated genome editing, including construction of targeting vectors, guide RNAs, transfection into hPSCs, and selection and verification of successfully targeted clones. This method can be applied to various needs of hPSC genetic engineering at high efficiency and high reliability.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Recombinação Homóloga/genética , Células-Tronco Pluripotentes/metabolismo , Animais , Southern Blotting , Sobrevivência Celular , Eletroporação , Fibroblastos/metabolismo , Marcação de Genes , Genes Reporter , Vetores Genéticos/metabolismo , Humanos , Camundongos , Mutação/genética , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição SOXB1/metabolismo , Transfecção
12.
Stem Cells Dev ; 24(24): 2925-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26414932

RESUMO

Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sistemas CRISPR-Cas , Técnicas de Introdução de Genes/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas do Tecido Nervoso/genética , Sequência de Bases , Linhagem Celular , Genes Reporter/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Dados de Sequência Molecular
13.
Stem Cell Reports ; 5(4): 647-59, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26411904

RESUMO

The discovery of induced pluripotent stem cells (iPSCs) and the concurrent development of protocols for their cell-type-specific differentiation have revolutionized our approach to cell therapy. It has now become critical to address the challenges related to the generation of iPSCs under current good manufacturing practice (cGMP) compliant conditions, including tissue sourcing, manufacturing, testing, and storage. Furthermore, regarding the technical challenges, it is very important to keep the costs of manufacturing and testing reasonable and solve logistic hurdles that permit the global distribution of these products. Here we describe our efforts to develop a process for the manufacturing of iPSC master cell banks (MCBs) under cGMPs and announce the availability of such banks.


Assuntos
Biotecnologia/métodos , Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Marcação de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transplante de Células-Tronco , Bancos de Tecidos
14.
Cytotherapy ; 17(9): 1169-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26276001

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been extensively investigated for their regenerative, immune-modulatory, and wound healing properties. While the laboratory studies have suggested that MSC's have a unique potential for modulating the etiopathology of multiple diseases, the results from clinical trials have not been encouraging or reproducible. One of the explanations for such variability is explained by the "art" of isolating and propagating MSCs. Therefore, establishing more than minimal criteria to define MSC would help understand best protocols to isolate, propagate and deliver MSCs. Developing a calibration standard, a database and a set of functional tests would be a better quality metric for MSCs. In this review, we discuss the importance of selecting a standard, issues associated with coming up with such a standard and how these issues can be mitigated.


Assuntos
Separação Celular/normas , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Padrões de Referência
15.
Stem Cell Reports ; 4(5): 847-59, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25843045

RESUMO

In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs) to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH(+) neurons was decreased in Parkinson's disease (PD) patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction). The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , DNA Mitocondrial/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariotipagem , Mitocôndrias/ultraestrutura , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
16.
Cytotherapy ; 17(6): 756-764, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25770678

RESUMO

The discovery of induced pluripotent stem cells (iPSCs) and the rapid evolution of clinically compliant protocols to generate such lines from a variety of tissue sources has raised the possibility that personalized medicine may be achievable in the near future. Several strategies to deliver iPSCs for iPSC-derived cell-based therapy have been proposed: one such model has been the cell-banking model, using processes developed by the cord blood industry. The cord blood industry has evolved primarily as a banking model in which units of cord blood harvested from discarded placenta are stored either in a public or a private cord blood bank for future use. The consideration of a cord blood--like banking model has been further spurred by the realization that this population of cells is an ideal starting sample to generate pluripotent cells. Spurred by these technological advances, major efforts are underway to develop a current Good Manufacturing Practice--compliant protocol to generate iPSCs from cord blood and to develop a haplobanking strategy. In this article, we discuss the issues that may affect such an effort.


Assuntos
Bancos de Sangue , Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Transplante de Células-Tronco
17.
Sci Rep ; 5: 9205, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25777362

RESUMO

Induced pluripotent stem cells (iPSC) are important tools for drug discovery assays and toxicology screens. In this manuscript, we design high efficiency TALEN and ZFN to target two safe harbor sites on chromosome 13 and 19 in a widely available and well-characterized integration-free iPSC line. We show that these sites can be targeted in multiple iPSC lines to generate reporter systems while retaining pluripotent characteristics. We extend this concept to making lineage reporters using a C-terminal targeting strategy to endogenous genes that express in a lineage-specific fashion. Furthermore, we demonstrate that we can develop a master cell line strategy and then use a Cre-recombinase induced cassette exchange strategy to rapidly exchange reporter cassettes to develop new reporter lines in the same isogenic background at high efficiency. Equally important we show that this recombination strategy allows targeting at progenitor cell stages, further increasing the utility of the platform system. The results in concert provide a novel platform for rapidly developing custom single or dual reporter systems for screening assays.


Assuntos
Marcação de Genes , Genes Reporter , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 19 , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Ordem dos Genes , Marcação de Genes/métodos , Loci Gênicos , Vetores Genéticos/genética , Humanos , Reprodutibilidade dos Testes
18.
J Vis Exp ; (96)2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25741760

RESUMO

Targeted transgene addition can provide persistent gene expression while circumventing the gene silencing and insertional mutagenesis caused by viral vector mediated random integration. This protocol describes a universal and efficient transgene targeted addition platform in human iPSCs based on utilization of validated open-source TALENs and a gene-trap-like donor to deliver transgenes into a safe harbor locus. Importantly, effective gene editing is rate-limited by the delivery efficiency of gene editing vectors. Therefore, this protocol first focuses on preparation of iPSCs for transfection to achieve high nuclear delivery efficiency. When iPSCs are dissociated into single cells using a gentle-cell dissociation reagent and transfected using an optimized program, >50% cells can be induced to take up the large gene editing vectors. Because the AAVS1 locus is located in the intron of an active gene (PPP1R12C), a splicing acceptor (SA)-linked puromycin resistant gene (PAC) was used to select targeted iPSCs while excluding random integration-only and untransfected cells. This strategy greatly increases the chance of obtaining targeted clones, and can be used in other active gene targeting experiments as well. Two weeks after puromycin selection at the dose adjusted for the specific iPSC line, clones are ready to be picked by manual dissection of large, isolated colonies into smaller pieces that are transferred to fresh medium in a smaller well for further expansion and genetic and functional screening. One can follow this protocol to readily obtain multiple GFP reporter iPSC lines that are useful for in vivo and in vitro imaging and cell isolation.


Assuntos
Engenharia Genética/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Transfecção/métodos , Eletroporação/métodos , Expressão Gênica , Marcação de Genes/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteína Fosfatase 1/genética , Puromicina/farmacologia , Transgenes
19.
Stem Cells Transl Med ; 4(3): 217-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25650438

RESUMO

There is a need for physical standards (reference materials) to ensure both reproducibility and consistency in the production of somatic cell types from human pluripotent stem cell (hPSC) sources. We have outlined the need for reference materials (RMs) in relation to the unique properties and concerns surrounding hPSC-derived products and suggest in-house approaches to RM generation relevant to basic research, drug screening, and therapeutic applications. hPSCs have an unparalleled potential as a source of somatic cells for drug screening, disease modeling, and therapeutic application. Undefined variation and product variability after differentiation to the lineage or cell type of interest impede efficient translation and can obscure the evaluation of clinical safety and efficacy. Moreover, in the absence of a consistent population, data generated from in vitro studies could be unreliable and irreproducible. Efforts to devise approaches and tools that facilitate improved consistency of hPSC-derived products, both as development tools and therapeutic products, will aid translation. Standards exist in both written and physical form; however, because many unknown factors persist in the field, premature written standards could inhibit rather than promote innovation and translation. We focused on the derivation of physical standard RMs. We outline the need for RMs and assess the approaches to in-house RM generation for hPSC-derived products, a critical tool for the analysis and control of product variation that can be applied by researchers and developers. We then explore potential routes for the generation of RMs, including both cellular and noncellular materials and novel methods that might provide valuable tools to measure and account for variation. Multiparametric techniques to identify "signatures" for therapeutically relevant cell types, such as neurons and cardiomyocytes that can be derived from hPSCs, would be of significant utility, although physical RMs will be required for clinical purposes.


Assuntos
Pesquisa Biomédica , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Pluripotentes , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Pesquisa Biomédica/tendências , Avaliação Pré-Clínica de Medicamentos/economia , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/tendências , Humanos , Padrões de Referência
20.
Stem Cells Transl Med ; 4(3): 230-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25637190

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.


Assuntos
Sinalização do Cálcio , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Via de Sinalização Wnt , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA