Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Ethnopharmacol ; 326: 117865, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38369066

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY: The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS: The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS: Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-ß1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS: Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Polygonum , Estilbenos , Camundongos , Masculino , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Citocinas/genética , Imunidade , Estilbenos/toxicidade , Estilbenos/uso terapêutico
2.
Chem Res Toxicol ; 36(12): 1872-1875, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38055372

RESUMO

Epigallocatechin-3-O-gallate (EGCG) is the major component of green tea extract, commonly found in dietary supplements, and has been associated with immune-mediated liver injury. The purpose of this study was to investigate the immunogenicity of EGCG in healthy donors expressing HLA-B*35:01, and characterize EGCG responsive T-cell clones. We have shown that EGCG can prime peripheral blood mononuclear cells and T-cells from donors with and without the HLA-B*35:01 allele. T-cell clones were CD4+ve and capable of secreting Th1, Th2, and cytolytic molecules. These data demonstrate that EGCG can activate T-cells in vitro, suggesting a significant role in the pathogenesis of green tea extract induced liver injury.


Assuntos
Catequina , Doença Hepática Crônica Induzida por Substâncias e Drogas , Humanos , Leucócitos Mononucleares , Antioxidantes , Chá , Antígenos HLA-B/genética , Extratos Vegetais/farmacologia , Catequina/farmacologia
3.
Biomed Pharmacother ; 160: 114400, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805186

RESUMO

Isoniazid (INH) is a highly effective single and/or combined first-line anti-tuberculosis (anti-TB) therapy drug, and the hepatotoxicity greatly limits its clinical application. INH-induced liver injury (INH-DILI) is a typical immune-mediated idiosyncratic drug-induced liver injury. Existing mechanisms including genetic variations in drug metabolism and immune responses cannot fully explain the differences in susceptibility and sensitivity to INH-DILI, suggesting that other factors may be involved. Accumulating evidence indicates that the development and severity of immune-mediated liver injury is related to gut microbiota. In this study, INH exposure caused liver damage, immune disregulation and microbiota profile alteration. Depletion of gut microbiota ameliorated INH-DILI, and improved INH-DILI-associated immune disorder and inflammatory response. Moreover, hepatotoxicity of INH was ameliorated by fecal microbiota transplantation (FMT) from INH-treated mice. Notably, Bifidobacterium abundance was significantly associated with transaminase levels. In conclusion, our results suggested that the effect of gut microbiota on INH-DILI was related to immunity, and the difference in INH-DILI sensitivity was related to the structure of gut microbiota. Changes in the structure of gut microbiota by continuous exposure of INH resulted in the tolerance to liver injury, and probiotics such as Bifidobacterium might play an important role in INH-DILI and its "adaptation" phenomenon. This work provides novel evidence for elucidating the underlying mechanism of difference in individual's response to INH-DILI and potential approach for intervening anti-TB drug liver injury by modulating gut microbiota.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Animais , Isoniazida/toxicidade , Antituberculosos/toxicidade , Fígado
4.
J Anal Methods Chem ; 2022: 5952436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083093

RESUMO

Mice are the most frequently used animals in pharmacokinetic studies; however, collecting series of blood samples from mice is difficult because of their small sizes and tiny vessels. In addition, due to the small sample size, it is problematic to perform high required quantification. Thus, present work aims to find an effective strategy for overcoming these challenges using trans-resveratrol as a tool drug. Based on the idea of a joint technology, the capillary microsampling (CMS) was chosen for blood sample collection from mice after delivery of trans-resveratrol (150 mg/kg) by gavage, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of trans-resveratrol and its main metabolites. All the mouse blood samples were exactly collected by CMS without obvious deviation. This provided credible samples for subsequent quantitative analysis. The HPLC-MS/MS method was found to be sensitive, accurate, and repeatable, and the pharmacokinetic parameters for all analytes were comparable with those reported in previous studies. However, the present joint technology offers the advantages of less animal damage, easy for sample preparation, and improved reliability. It has overcome some of the major limitations revealed in previous pharmacokinetic studies in mice and therefore provides a more effective option for future studies.

5.
Front Pharmacol ; 12: 730461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512354

RESUMO

Depression disorder is one of the most serious mental illnesses in the world. Escitalopram is the essential first-line medication for depression disorder. It is the substrate of hepatic cytochrome P450 (CYP) enzyme CYP2C19 with high polymorphism. The effect of CYP2C19 on pharmacokinetics and pharmacodynamics on Caucasian population has been studied. The Clinical Pharmacogenetics Implementation Consortium Guideline provides dosing recommendations for escitalopram on CYP2C19 genotypes on the basis of the studies on Caucasian population. However, the gene frequency of the alleles of CYP2C19 showed racial differences between Chinese and Caucasian populations. Representatively, the frequency of the *2 and *3 allele, which were considered as poor metabolizer, has been shown to be three times higher in Chinese than in Caucasians. In addition, the environments might also lead to different degrees of impacts on genotypes. Therefore, the guidelines based on the Caucasians may not be applicable to the Chinese, which induced the establishment of a guideline in China. It is necessary to provide the evidence of individual treatment of escitalopram in Chinese by studying the effect of CYP2C19 genotypes on the pharmacokinetics parameters and steady-state concentration on Chinese. In this study, single-center, randomized, open-label, two-period, two-treatment crossover studies were performed. Ninety healthy Chinese subjects finished the trials, and they were included in the statistical analysis. The pharmacokinetics characteristics of different genotypes in Chinese were obtained. The results indicate that the poor metabolizer had higher exposure, and increased half-life than the extensive metabolizer and intermediate metabolite. The prediction of steady-state concentration based on the single dose trial on escitalopram shows that the poor metabolizer might have a higher steady-state concentration than the extensive metabolizer and intermediate metabolite in Chinese. The results indicate that the genetic testing before medication and the adjustment of escitalopram in the poor metabolizer should be considered in the clinical treatments in Chinese. The results provide the evidence of individual treatment of escitalopram in Chinese, which will be beneficial for the safer and more effective application of escitalopram in the Chinese population. Clinical Trial Registration: identifier ChiCTR1900027226.

6.
Toxicology ; 460: 152858, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34273448

RESUMO

The incidence and mortality of cancer are rapidly growing all over the world. Nowadays, antineoplastic antimetabolites still play a key role in the chemotherapy of cancer. However, the interindividual variations in the efficacy and toxicity of antineoplastic antimetabolites are nonnegligible challenges to their clinical applications. Although many studies have focused on genetic variation, the reasons for these interindividual variations have still not been fully understood. Gut microbiota is reported to be associated with the efficacy and toxicity of antineoplastic antimetabolites. In this review, we summarize the interaction of antineoplastic antimetabolites on gut microbiota and the influences of shifted gut microbiota profiles on the efficacy and toxicity of antineoplastic antimetabolites. The factors affecting the efficacy and toxicity of antineoplastic antimetabolites via gut microbiota are also discussed. In addition, we present our viewpoints that regulating the gut microbiota may increase the efficacy and decrease the toxicity of antineoplastic antimetabolites. This will help us better understand the new mechanism via gut microbiota and promote individualized use of antineoplastic antimetabolites.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/toxicidade , Interações Alimento-Droga/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Neoplasias/metabolismo , Probióticos/administração & dosagem , Probióticos/farmacocinética , Resultado do Tratamento
7.
Toxicol Appl Pharmacol ; 422: 115555, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915122

RESUMO

Sodium valproate (SVP) is one of the most commonly prescribed antiepileptic drugs. However, SVP is known to induce hepatotoxicity, which limits its clinical application for treating various neurological disorders. Previously, we found that ginsenoside compound K (G-CK) demonstrated protective effects against SVP-induced hepatotoxicity by mitigating oxidative stress and mitochondrial damage, as well as downregulating the expression of soluble epoxide hydrolase (sEH) in rats. This study aimed to assess the effect of G-CK on SVP-induced cytotoxicity in human hepatocytes (L02 cell line), as well as the effect of the downregulation of sEH expression on both the hepatotoxicity of SVP and the hepatoprotective effects of G-CK. We observed that G-CK significantly ameliorated the decrease of cell viability, elevated ALT, AST and ALP activities, significant oxidative stress, and loss of mitochondrial membrane potential induced by SVP in L02 cells. G-CK also inhibited the SVP-mediated upregulation of sEH expression. Transfection of the L02 cells with siRNA-sEH led to a partial improvement in the L02 cytotoxicity caused by SVP by mitigating cellular oxidative stress without recovering the reduced mitochondrial membrane potential. Furthermore, the combination of siRNA-sEH and G-CK had better inhibitory effects on the SVP-induced changes of all detection indices except mitochondrial membrane potential than G-CK alone. Together, our results demonstrated that the combination of siRNA-sEH and G-CK better suppressed the SVP-induced cytotoxicity in L02 cells compared to either G-CK or siRNA-sEH alone.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Epóxido Hidrolases/metabolismo , Ginsenosídeos/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Ácido Valproico/toxicidade , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação para Baixo , Epóxido Hidrolases/genética , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Fígado/enzimologia , Fígado/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , RNA Interferente Pequeno/genética
8.
Expert Rev Proteomics ; 18(3): 233-240, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33866908

RESUMO

Elucidating the dysregulated metabolic pathways in cancer cells and their relevance to cisplatin resistance could yield new insights into cancer therapy. We previously reported that eight metabolites involved in the tricarboxylic acid (TCA) cycle and glutamine metabolism were associated with platinum-based chemotherapy efficacy in human lung cancer. Here, we investigated the metabolic differences upon cisplatin treatment in lung cancer in vitro and in vivo. A simple and partially validated standard addition method was applied for the quantification of five metabolites involved in the TCA cycle and glutamine metabolism using amide hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The present study investigated the levels of these biomarkers in A549 cells and the cisplatin-resistant A549-DDP cells, as well as in the plasma before and after cisplatin treatment in A549 xenograft mice. Levels of five metabolites, including 2-hydroxyglutaric acid (2-HG), α-ketoglutarate (α-KG), succinate, glutamine, and glutamate, showed a decreasing trend in A549-DDP cells. In addition, 2-HG and glutamine were the most significantly altered metabolites in cisplatin-treated A549 xenograft mice. These data indicate that the TCA cycle and glutamine metabolism play important roles in cisplatin-based chemotherapy resistance in lung cancer. Our results provide a new angle for exploring the molecular mechanisms underlying cisplatin resistance.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glutamina/farmacologia , Glutamina/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Espectrometria de Massas em Tandem
9.
Acta Pharmacol Sin ; 42(1): 27-35, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32123300

RESUMO

Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Medicamentos de Ervas Chinesas/efeitos adversos , Fallopia multiflora/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Fígado/efeitos dos fármacos , Imunidade Adaptativa/genética , Animais , Povo Asiático , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/toxicidade , Antígeno HLA-B35/genética , Humanos , Tolerância Imunológica/fisiologia , Lipopolissacarídeos/toxicidade
10.
Chin J Nat Med ; 18(7): 500-507, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32616190

RESUMO

Gut microbiota dysbiosis is a risk factor for colorectal cancer (CRC) in inflammatory bowel disease (IBD). In this study, the effects of Panax notoginseng saponins (PNS) on colitis-associated CRC progression were evaluated on an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model. In vivo, PNS significantly relieved AOM/DSS-induced colon tumorigenesis and development by reducing the disease activity index (DAI) scores and colon tumor load. The 16S rRNA data of fecal samples showed that the microbiome community was obviously destructed, while PNS could recover the richness and diversity of gut microbiota. Especially, PNS could increase the abundance of Akkermansia spp. which was significantly decreased in model group and negatively correlated with the progression of CRC. Moreover, ginsenoside compound K (GC-K) was evaluated on the effects of human CRC cells, which was the main bio-transformed metabolite of PNS by gut microbiota. Our data showed that PNS played important role in the prevention of the progression of CRC, due to their regulation on the microbiome balance and microbial bio-converted product with anti-CRC activity.


Assuntos
Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Panax notoginseng , Saponinas/farmacologia , Animais , Modelos Animais de Doenças , Fezes/química , Masculino , Camundongos , RNA Ribossômico 16S/metabolismo
11.
Expert Rev Proteomics ; 17(3): 233-242, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32306783

RESUMO

Background: Colorectal cancer (CRC) represents a third leading cause of cancer-related death worldwide. The reliable diagnostic biomarkers for detecting CRC at early stage is critical for decreasing the mortality.Method: A conjunctive lipidomic approach was employed to investigate the differences in plasma lipid profiles of CRC patients (n = 101) and healthy volunteers (n = 52). Based on UHPLC-Q-TOF MS and UHPLC-QQQ MS platforms, a total of 236 lipids were structurally detected. Multivariate data analysis was conducted for biomarkers discovery.Results: A total of 11 lipid species, including 1 Glycerophosphoethanolamine (PE), 3 ethanolamine plasmalogens (PlsEtn), 1 plasmanyl glycerophosphatidylethanolamine (PE-O), 3 fatty acids (FFA), 1 Fatty acid ester of hydroxyl fatty acid (FAHFA) and 2 Diacylglycerophosphates (PA) were identified to distinguish the CRC patients at early stage from healthy controls. In addition, these potential lipid biomarkers achieved an estimated AUC=0.981 in a validation set for univariate ROC analysis.Conclusion: By combining Q-TOF MS and QQQ MS analysis, the 11 lipids exhibited good performance in differentiating early-stage CRC and healthy control. This study also demonstrated that lipidomics is a powerful tool in discovering new potential biomarkers for cancer diagnosis.


Assuntos
Neoplasias Colorretais/sangue , Detecção Precoce de Câncer , Lipidômica , Plasmalogênios/sangue , Idoso , Ceramidas/sangue , Colesterol/sangue , Neoplasias Colorretais/patologia , Feminino , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Lisofosfatidilcolinas/sangue , Lisofosfolipídeos/sangue , Masculino , Pessoa de Meia-Idade , Esfingosina/análogos & derivados , Esfingosina/sangue , Triglicerídeos/sangue
12.
Toxicol Appl Pharmacol ; 391: 114900, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061593

RESUMO

Methotrexate (MTX) is a widely used therapeutic agent for the treatment of cancer and autoimmune diseases. However, its efficacy is often limited by adverse effects, such as intestinal toxicity. Although treatment with leucovorin (LV) is the most common method to reduce the toxic effects of MTX, it may also compromise the therapeutic effects of MTX. The gut microbiome has been reported to be associated with the intestinal toxicity of MTX. In this study, the intestinal damage of MTX was ameliorated by treatment with LV. Moreover, the population, diversity, and principal components of the gut microbiota in MTX-treated mice were restored by treatment with LV. The only element of the gut microbiota that was significantly changed after treatment with LV was Bifidobacterium, and supplementation with Bifidobacterium longum ameliorated MTX-induced intestinal damage. In conclusion, our results suggest that the balance and the composition of gut microbiota have an important role in the LV-mediated protection against MTX-induced intestinal toxicity. This work provides foundation of data in support of a new potential mechanism for the prevention of MTX-induced intestinal toxicity.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Leucovorina/uso terapêutico , Metotrexato/toxicidade , Animais , Bifidobacterium/efeitos dos fármacos , Colo/patologia , DNA Bacteriano/genética , Enteropatias/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Ribossômico 16S/genética , Redução de Peso/efeitos dos fármacos
13.
Xenobiotica ; 50(9): 1011-1022, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31858877

RESUMO

1. Bupleuri Radix (BR) is a herbal medicine traditionally used orally in oriental countries, which inevitably comes into contact with the intestinal microbiota. However, whether gut microbiota contribute to the biotransformation of BR, and/or the formation of pharmacologically active compounds remains unknown.2. In this study, the main saikosaponins (SAPs) of Bupleurum (including saikosaponin a, b1, b2, c, d, f, h) and BR extract (BRE) were individually incubated with human fecal suspensions (HFS), and metabolic time courses of SAPs and their metabolites by human gut bacteria were systematically characterized.3. Deglycosylation and dehydration were the main metabolic pathways identified for SAPs including newly investigated saikosaponin f (SSf) and saikosaponin h (SSh); dehydration had not been reported previously. A total of 19 dehydrated and deglycosylated metabolites of SAPs were detected and characterized, and 10 of them were newly identified. Moreover, SAPs of BRE were found to be deglycosylated to prosaikogenins. In addition, 13 metabolic pathways related to human gut microbiota were identified for phytochemicals of BRE except for SAPs. Gut microbiota may play a significant role in the biotransformation of BR in humans.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Microbioma Gastrointestinal , Biotransformação , Bupleurum , Humanos , Raízes de Plantas
14.
Am J Chin Med ; 47(6): 1381-1404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31488036

RESUMO

Oplopanax elatus (Nakai) Nakai is an oriental herb, the polyyne-enriched fraction of which (PEFO) showed anticolorectal cancer (anti-CRC) effects. Other concomitant components, which are inevitably bio-transformed by gut microbiota after oral administration, might be interfere with the pharmacodynamics of polyynes. However, the influence of human gut microbiota on molecules from O. elatus possessing anticancer activity are yet unknown. In this study, the compounds in PEFO and PEFO incubated with human gut microbiota were analyzed and tentatively identified by HPLC-DAD-QTOF-MS. Two main polyynes ((3S,8S)-falcarindiol and oplopandiol) were not significantly decomposed, but some new unknown molecules were discovered during incubation. However, the antiproliferative effects of PEFO incubated with human gut microbiota for 72 h (PEFO I) were much lower than that of PEFO on HCT-116, SW-480, and HT-29 cells. Furthermore, PEFO possessed better anti-CRC activity in vivo, and significantly induced apoptosis of the CRC cells, which was associated with activation of caspase-3 according to the Western-blot results (P<0.05). These results suggest anticolorectal cancer activity of polyynes might be antagonized by some bio-converted metabolites after incubation with human gut microbiota. Therefore, it might be better for CRC prevention if the polyynes could be orally administrated as purified compounds.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Di-Inos/metabolismo , Álcoois Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Oplopanax/química , Administração Oral , Animais , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Biotransformação , Caspase 3/metabolismo , Cromatografia Líquida de Alta Pressão , Di-Inos/administração & dosagem , Di-Inos/isolamento & purificação , Di-Inos/farmacologia , Álcoois Graxos/administração & dosagem , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/farmacologia , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
15.
Onco Targets Ther ; 12: 6001-6012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413595

RESUMO

PURPOSE: Imprinted genes are often identified as key players in the etiology and prognosis of many tumors; however, the role they play in colon cancer remains unclear. Along with the development of big data analysis came the discovery of a wealth of genetic prognostic factors, like microsatellite instability for colon cancer, which need to be taken into consideration when evaluating new biomarkers for the disease. METHODS: We systematically mined public databases to find recurrence free survival (RFS)-related imprinted genes for colon cancer patients on the mRNA level by univariate and multivariate survival analyses. We then investigated the association of methylation status and microRNA expression of the targeted imprinted genes with survival rate of colon cancer patients. Lastly, in a clinical study we used qRT-PCR and immunohistochemistry to quantify mRNA and protein expression of the imprinted genes that related to RFS in our bioinformatics screening, respectively, in 20 tumor tissues compared to paired adjacent tissues. RESULTS: The results show that paternally expressed gene 3 (PEG3) is the only imprinted gene related to colon cancer patient prognosis on the mRNA level in our datasets, and high mRNA expression of PEG3 is associated with a poor prognosis. Furthermore, the methylation beta value of cg13960339, as well as the expression of 4 microRNAs, negatively correlated with PEG3 mRNA level and were correlated with the prognosis of colon cancer patients. Moreover, the expression of PEG3 mRNA in colon cancer is significantly lower, but PEG3 protein expression is significantly higher compared to that in normal tissues. CONCLUSION: PEG3 is likely associated with the progression and prognosis of colon cancer.

16.
Anal Bioanal Chem ; 411(20): 5079-5088, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201454

RESUMO

Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. Emerging evidence has shown that lipid metabolism plays important roles in the occurrence and progression of CRC. The identification of potential biomarkers for CRC progression is critical for precise diagnosis and treatment. Therefore, the aim of this study is to explore the potential lipid markers in relation to CRC progression. The plasma of patients with stage I/II CRC (n = 20) and stage III/IV CRC (n = 20) was collected. Lipidomic screening was performed by ultrahigh-performance liquid chromatography-mass spectrometry. After multivariate data analysis, including orthogonal partial least squares discriminant analysis, determination of the fold change, and the Mann-Whitney U test, eight lipid species with altered levels with p < 0.05 and fold change greater than 2 were selected as potential lipid biomarkers. Compared with patients with early-stage CRC, patients with advanced-stage CRC showed significantly higher levels of cholesteryl ester (20:4) and some triglycerides with a saturated fatty acid chain and a lower level of fatty acid ester of hydroxy fatty acid 27:1 (9:0-18:1) in plasma. Furthermore, the receiver operating characteristic including these potential lipid biomarkers yielded a sensitivity of 85% and specificity of 80% for separation of early-stage CRC patients from advanced-stage CRC patients. In all, this is the first report showing that the levels of triglycerides, the major contents of lipid droplets, increase in plasma of advanced-stage CRC patients compared with early-stage CRC patients. These data indicate that lipid droplets may be target organelles for the study of CRC progression and treatment. Graphical abstract.


Assuntos
Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Neoplasias Colorretais/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Triglicerídeos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Pharmacol Res ; 146: 104283, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129178

RESUMO

Natural products have represented attractive alternatives for disease prevention and treatment over the course of human history and have contributed to the development of modern drugs. These natural products possess beneficial efficacies as well as adverse efffects, which vary largely among individuals because of genetic variations in their pharmacokinetics and pharmacodynamics. As with other synthetic chemical drugs, the dosing of natural products can be optimized to improve efficacy and reduce toxicity according to the pharmacogenetic properties. With the emergence and development of pharmacogenomics, it is possible to discover and identify the targets/mechanisms of pharmacological effects and therapeutic responses of natural products effectively and efficiently on the whole genome level. This review covers the effects of genetic variations in drug metabolizing enzymes, drug transporters, and direct and indirect interactions with the pharmacological targets/pathways on the individual response to natural products, and provides suggestions on dosing regimen adjustments of natural products based on their pharmacokinetic and pharmacogenetic paratmeters. Finally, we provide our viewpoints on the importance and necessity of pharmacogenetic and pharmacogenomic research of natural products in natural medicine's rational development and clinical application of precision medicine.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/farmacocinética , Transporte Biológico , Humanos , Farmacogenética
18.
Hepatology ; 70(1): 346-357, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985007

RESUMO

Polygonum multiflorum (PM) is a well-known Chinese herbal medicine that has been reported to induce inflammation-associated idiosyncratic liver injury. This study aimed to identify the genetic basis of susceptibility to PM-drug-induced liver injury (PM-DILI) and to develop biological markers for predicting the risk of PM-DILI in humans. The major histocompatibility complex (MHC) regions of 11 patients with PM-DILI were sequenced, and all human leukocyte antigen (HLA)-type frequencies were compared to the Han-MHC database. An independent replication study that included 15 patients with PM-DILI, 33 patients with other DILI, and 99 population controls was performed to validate the candidate allele by HLA-B PCR sequence-based typing. A prospective cohort study that included 72 outpatients receiving PM for 4 weeks was designed to determine the influence of the risk allele on PM-DILI. In the pilot study, the frequency of HLA-B*35:01 was 45.4% in PM-DILI patients compared with 2.7% in the Han Chinese population (odds ratio [OR], 30.4; 95% confidence interval [CI], 11.7-77.8; P = 1.9 × 10-10 ). In the independent replication study and combined analyses, a logistic regression model confirmed that HLA-B*35:01 is a high-risk allele of PM-DILI (PM-DILI versus other DILI, OR, 86.5; 95% CI, 14.2-527.8, P = 1.0 × 10-6 ; and PM-DILI versus population controls, OR, 143.9; 95% CI, 30.1-687.5, P = 4.8 × 10-10 ). In the prospective cohort study, an asymptomatic increase in transaminase levels was diagnosed in 6 patients, representing a significantly higher incidence (relative risk, 8.0; 95% CI, 1.9-33.2; P < 0.02) in the HLA-B*35:01 carriers (37.5%) than in the noncarriers (4.7%). Conclusion: The HLA-B*35:01 allele is a genetic risk factor for PM-DILI and a potential biomarker for predicting PM-DILI in humans.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Fallopia multiflora/toxicidade , Antígeno HLA-B35/genética , Adulto , Povo Asiático/genética , Biomarcadores , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
19.
Biomed Chromatogr ; 33(9): e4563, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31025385

RESUMO

Astragali Radix (AR) is a widely used traditional Chinese medicine for healing the cardiovascular, liver and immune systems. Recently, superfine pulverizing technology has been applied to developing novel formulations to improve bioavailability of the active constituents in herbs, such as ultrafine granular powder of AR. In this study, a universal and sensitive quantitative method based on LC-MS/MS was employed for determining formononetin, the main flavonoid in AR, in human plasma for comparative pharmacokinetics of three oral formulations of AR. Formononetin and IS (quercetin) were extracted by ethyl acetate from human plasma and were separated on a C18 column with a mobile phase consisting of acetonitrile and 0.1% formic acid. Positive-ion electrospray-ionization mode was applied in mass spectrometric detection. The quantitative method was validated with regards to selectivity, linearity, accuracy and precision, matrix effect, extraction recovery and stability, and was applied to comparing the pharmacokinetics of ultrafine granular powder (UGP), ultrafine powder (UP) and traditional decoction pieces (TDP) of AR after oral administration. The peak concentration and areas under the concentration-time curve of formononetin in UGP and UP were significantly higher than those of TDP. UGP and UP could significantly improve the bioavailability of AR in human compared with TDP after oral administration.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Isoflavonas/sangue , Isoflavonas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Astragalus propinquus , Estabilidade de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Humanos , Isoflavonas/química , Limite de Detecção , Modelos Lineares , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
20.
Chin J Nat Med ; 17(3): 231-240, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30910060

RESUMO

Panax notoginseng saponins (PNS) are the major components of Panax notoginseng, with multiple pharmacological activities but poor oral bioavailability. PNS could be metabolized by gut microbiota in vitro, while the exact role of gut microbiota of PNS metabolism in vivo remains poorly understood. In this study, pseudo germ-free rat models were constructed by using broad-spectrum antibiotics to validate the gut microbiota-mediated transformation of PNS in vivo. Moreover, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for quantitative analysis of four metabolites of PNS, including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GCK) and protopanaxatriol (PPT). The results showed that the four metabolites could be detected in the control rat plasma, while they could not be determined in pseudo germ-free rat plasma. The results implied that PNS could not be biotransformed effectively when gut microbiota was disrupted. In conclusion, gut microbiota plays an important role in biotransformation of PNS into metabolites in vivo.


Assuntos
Microbioma Gastrointestinal/fisiologia , Panax notoginseng/química , Saponinas/metabolismo , Animais , Antibacterianos/farmacologia , Biotransformação , Cromatografia Líquida de Alta Pressão , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/sangue , Masculino , Ratos Sprague-Dawley , Sapogeninas/sangue , Saponinas/administração & dosagem , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA