Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905103

RESUMO

As obligate intracellular pathogens, viruses often activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the salvage NAD+ synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses with unknown mechanism. Here we report that NAMPT restricts herpes simplex virus 1 (HSV-1) replication via phosphoribosyl-hydrolase activity toward key viral structural proteins, independent of NAD+ synthesis. Deep mining of enriched phosphopeptides of HSV-1-infected cells identified phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins. Indeed, NAMPT de-phosphoribosylates viral proteins in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Moreover, loss of NAMPT renders mice highly susceptible to HSV-1 infection. The work describes a hidden enzyme activity of a metabolic enzyme in viral infection and host defense, offering a system to interrogate roles of phosphoribosylation in metazoans.

2.
Sci Rep ; 12(1): 14972, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100631

RESUMO

During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure.


Assuntos
COVID-19 , Edição de RNA , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , COVID-19/genética , Células CACO-2 , Citidina Desaminase , Humanos , Mutação , Pandemias , Proteínas , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética
3.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700355

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Assuntos
Antivirais , Aspartato Carbamoiltransferase , Tratamento Farmacológico da COVID-19 , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Di-Hidro-Orotase , Inibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspartato Carbamoiltransferase/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Di-Hidro-Orotase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fator de Transcrição RelA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
4.
Res Sq ; 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35441170

RESUMO

During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure.

5.
bioRxiv ; 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-34981048

RESUMO

During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure. ONE-SENTENCE SUMMARY: Efficient Editing of SARS-CoV-2 genomic RNA by Host APOBEC deaminases and Its Potential Impacts on the Viral Replication and Emergence of New Strains in COVID-19 Pandemic.

6.
mBio ; 12(5): e0233521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544279

RESUMO

Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic with astonishing mortality and morbidity. The high replication and transmission of SARS-CoV-2 are remarkably distinct from those of previous closely related coronaviruses, and the underlying molecular mechanisms remain unclear. The innate immune defense is a physical barrier that restricts viral replication. We report here that the SARS-CoV-2 Nsp5 main protease targets RIG-I and mitochondrial antiviral signaling (MAVS) protein via two distinct mechanisms for inhibition. Specifically, Nsp5 cleaves off the 10 most-N-terminal amino acids from RIG-I and deprives it of the ability to activate MAVS, whereas Nsp5 promotes the ubiquitination and proteosome-mediated degradation of MAVS. As such, Nsp5 potently inhibits interferon (IFN) induction by double-stranded RNA (dsRNA) in an enzyme-dependent manner. A synthetic small-molecule inhibitor blunts the Nsp5-mediated destruction of cellular RIG-I and MAVS and processing of SARS-CoV-2 nonstructural proteins, thus restoring the innate immune response and impeding SARS-CoV-2 replication. This work offers new insight into the immune evasion strategy of SARS-CoV-2 and provides a potential antiviral agent to treat CoV disease 2019 (COVID-19) patients. IMPORTANCE The ongoing COVID-19 pandemic is caused by SARS-CoV-2, which is rapidly evolving with better transmissibility. Understanding the molecular basis of the SARS-CoV-2 interaction with host cells is of paramount significance, and development of antiviral agents provides new avenues to prevent and treat COVID-19 diseases. This study describes a molecular characterization of innate immune evasion mediated by the SARS-CoV-2 Nsp5 main protease and subsequent development of a small-molecule inhibitor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteases 3C de Coronavírus/metabolismo , Proteína DEAD-box 58/metabolismo , Receptores Imunológicos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CACO-2 , Proteases 3C de Coronavírus/genética , Proteína DEAD-box 58/genética , Ensaio de Imunoadsorção Enzimática , Células HCT116 , Células HEK293 , Humanos , Imunidade Inata/genética , Imunidade Inata/fisiologia , Immunoblotting , Interferon Tipo I/metabolismo , Camundongos , Receptores Imunológicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitinação , Replicação Viral/genética , Replicação Viral/fisiologia
7.
bioRxiv ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127971

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cancer patients are usually immunocompromised and thus are particularly susceptible to SARS-CoV-2 infection resulting in COVID-19. Although many vaccines against COVID-19 are being preclinically or clinically tested or approved, none have yet been specifically developed for cancer patients or reported as having potential dual functions to prevent COVID-19 and treat cancer. Here, we confirmed that COVID-19 patients with cancer have low levels of antibodies against the spike (S) protein, a viral surface protein mediating the entry of SARS-CoV-2 into host cells, compared with COVID-19 patients without cancer. We developed an oncolytic herpes simplex virus-1 vector-based vaccine named oncolytic virus (OV)-spike. OV-spike induced abundant anti-S protein neutralization antibodies in both tumor-free and tumor-bearing mice, which inhibit infection of VSV-SARS-CoV-2 and wild-type (WT) live SARS-CoV-2 as well as the B.1.1.7 variant in vitro. In the tumor-bearing mice, OV-spike also inhibited tumor growth, leading to better survival in multiple preclinical tumor models than the untreated control. Furthermore, OV-spike induced anti-tumor immune response and SARS-CoV-2-specific T cell response without causing serious adverse events. Thus, OV-spike is a promising vaccine candidate for both preventing COVID-19 and enhancing the anti-tumor response. ONE SENTENCE SUMMARY: A herpes oncolytic viral vector-based vaccine is a promising vaccine with dual roles in preventing COVID-19 and treating tumor progression.

8.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785613

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a sensor that recognizes cytosolic double-stranded RNA derived from microbes to induce host immune response. Viruses, such as herpesviruses, deploy diverse mechanisms to derail RIG-I-dependent innate immune defense. In this study, we discovered that mouse RIG-I is intrinsically resistant to deamidation and evasion by herpes simplex virus 1 (HSV-1). Comparative studies involving human and mouse RIG-I indicate that N495 of human RIG-I dictates species-specific deamidation by HSV-1 UL37. Remarkably, deamidation of the other site, N549, hinges on that of N495, and it is catalyzed by cellular phosphoribosylpyrophosphate amidotransferase (PPAT). Specifically, deamidation of N495 enables RIG-I to interact with PPAT, leading to subsequent deamidation of N549. Collaboration between UL37 and PPAT is required for HSV-1 to evade RIG-I-mediated antiviral immune response. This work identifies an immune regulatory role of PPAT in innate host defense and establishes a sequential deamidation event catalyzed by distinct deamidases in immune evasion.IMPORTANCE Herpesviruses are ubiquitous pathogens in human and establish lifelong persistence despite host immunity. The ability to evade host immune response is pivotal for viral persistence and pathogenesis. In this study, we investigated the evasion, mediated by deamidation, of species-specific RIG-I by herpes simplex virus 1 (HSV-1). Our findings uncovered a collaborative and sequential action between viral deamidase UL37 and a cellular glutamine amidotransferase, phosphoribosylpyrophosphate amidotransferase (PPAT), to inactivate RIG-I and mute antiviral gene expression. PPAT catalyzes the rate-limiting step of the de novo purine synthesis pathway. This work describes a new function of cellular metabolic enzymes in host defense and viral immune evasion.


Assuntos
Amidofosforribosiltransferase/metabolismo , Proteína DEAD-box 58/metabolismo , Herpes Simples/enzimologia , Herpesvirus Humano 1/enzimologia , Proteínas Estruturais Virais/metabolismo , Replicação Viral , Amidofosforribosiltransferase/genética , Motivos de Aminoácidos , Animais , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Ligação Proteica , Especificidade da Espécie , Proteínas Estruturais Virais/genética
9.
bioRxiv ; 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33564769

RESUMO

The newly emerged SARS-CoV-2 caused a global pandemic with astonishing mortality and morbidity. The mechanisms underpinning its highly infectious nature remain poorly understood. We report here that SARS-CoV-2 exploits cellular CTP synthetase 1 (CTPS1) to promote CTP synthesis and suppress interferon (IFN) induction. Screening a SARS-CoV-2 expression library identified ORF7b and ORF8 that suppressed IFN induction via inducing the deamidation of interferon regulatory factor 3 (IRF3). Deamidated IRF3 fails to bind the promoters of classic IRF3-responsible genes, thus muting IFN induction. Conversely, a shRNA-mediated screen focused on cellular glutamine amidotransferases corroborated that CTPS1 deamidates IRF3 to inhibit IFN induction. Functionally, ORF7b and ORF8 activate CTPS1 to promote de novo CTP synthesis while shutting down IFN induction. De novo synthesis of small-molecule inhibitors of CTPS1 enabled CTP depletion and IFN induction in SARS-CoV-2 infection, thus impeding SARS-CoV-2 replication. Our work uncovers a strategy that a viral pathogen couples immune evasion to metabolic activation to fuel viral replication. Inhibition of the cellular CTPS1 offers an attractive means for developing antiviral therapy that would be resistant to SARS-CoV-2 mutation.

10.
Cell Metab ; 31(5): 937-955.e7, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32325032

RESUMO

Cell proliferation and inflammation are two metabolically demanding biological processes. How these competing processes are selectively executed in the same cell remains unknown. Here, we report that the enzyme carbamoyl-phosphate synthetase, aspartyl transcarbamoylase, and dihydroorotase (CAD) deamidates the RelA subunit of NF-κB in cancer cells to promote aerobic glycolysis and fuel cell proliferation in tumorigenesis. This post-translational modification switches RelA function from mediating the expression of NF-κB-responsive genes to that of glycolytic enzymes, thus shunting the cell's inflammatory response to aerobic glycolysis. Further, we profiled diverse human cancer cell lines and found that high CAD expression and a subset of RELA mutations correlated with RelA deamidation. And by use of inhibitors of key glycolytic enzymes, we validated the pivotal role of RelA deamidation in tumorigenesis of cancer cell lines. This work illuminates a mechanism by which protein deamidation selectively specifies gene expression and consequent biological processes.


Assuntos
Inflamação/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Glicólise , Humanos , Masculino , Camundongos , Camundongos Nus , Mutação , Fator de Transcrição RelA/genética
11.
Front Immunol ; 11: 613799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584700

RESUMO

Herpes simplex viruses (HSVs) are experts in establishing persistent infection in immune-competent humans, in part by successfully evading immune activation through diverse strategies. Upon HSV infection, host deploys pattern recognition receptors (PRRs) to recognize various HSV-associated molecular patterns and mount antiviral innate immune responses. In this review, we describe recent advances in understanding the contributions of cytosolic PRRs to detect HSV and the direct manipulations on these receptors by HSV-encoded viral proteins as countermeasures. The continuous update and summarization of these mechanisms will deepen our understanding on HSV-host interactions in innate immunity for the development of novel antiviral therapies, vaccines and oncolytic viruses.


Assuntos
Herpes Simples/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Simplexvirus/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/imunologia , Vírus Oncolíticos/imunologia , Proteínas Virais/imunologia
12.
Front Microbiol ; 10: 2647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798565

RESUMO

Herpesviruses constitute a large family of disease-causing DNA viruses. Each herpesvirus strain is capable of infecting particular organisms with a specific cell tropism. Upon infection, pattern recognition receptors (PRRs) recognize conserved viral features to trigger signaling cascades that culminate in the production of interferons and pro-inflammatory cytokines. To invoke a proper immune response while avoiding collateral tissue damage, signaling proteins involved in these cascades are tightly regulated by post-translational modifications (PTMs). Herpesviruses have developed strategies to subvert innate immune signaling pathways in order to ensure efficient viral replication and achieve persistent infection. The ability of these viruses to control the proteins involved in these signaling cascades post-translationally, either directly via virus-encoded enzymes or indirectly through the deregulation of cellular enzymes, has been widely reported. This ability provides herpesviruses with a powerful tool to shut off or restrict host antiviral and inflammatory responses. In this review, we highlight recent findings on the herpesvirus-mediated post-translational control along PRR-mediated signaling pathways.

13.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766619

RESUMO

Iron is an essential element, closely linked with host immune responses. Nevertheless, the relationship between iron metabolism and virus infection is still unclear in aquatic vertebrates. To address this issue, we employed grass carp (Ctenopharyngodon idella) and its lethal virus, grass carp reovirus (GCRV), a double-strand RNA virus, as models. Our results demonstrate that GCRV infection increases the iron content and alters the expression of iron metabolism-related genes both in vivo and in vitro. Of note, the expression of C. idella transferrin receptor 1 (CiTfR1) rather than transferrin is upregulated upon GCRV infection. To clarify the implications of CiTfR1 upregulation for antiviral immunity, we proved that CiTfR1 was not a helper for GCRV invasion, but instead, it inhibited GCRV infection and promoted cell proliferation by facilitating the accumulation of intracellular labile iron pool (LIP), which increases intracellular oxidative stress. Interestingly, we found that CiTfR1 overexpression inhibited the mRNA expression of C. idella interferon 1 (CiIFN1) and CiIFN3. The present study reveals a novel antiviral defense mechanism in teleost where TfR1 induces the accumulation of LIP, leading to the suppression of virus infection and the proliferation of host cells, indicating that iron can be used as a medicated feed additive for the control of animal viral disease.


Assuntos
Carpas/metabolismo , Doenças dos Peixes/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Receptores da Transferrina/metabolismo , Infecções por Reoviridae/metabolismo , Reoviridae/metabolismo , Animais
14.
Sci Adv ; 5(8): eaax1031, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489375

RESUMO

Helicases play pivotal roles in fundamental biological processes, and posttranslational modifications regulate the localization, function, and stability of helicases. Here, we report that methionine oxidation of representative helicases, including DNA and RNA helicases of viral (ORF44 of KSHV) and cellular (MCM7 and RIG-I) origin, promotes their expression and functions. Cellular viperin, a major antiviral interferon-stimulated gene whose functions beyond host defense remain largely unknown, catalyzes the methionine oxidation of these helicases. Moreover, biochemical studies entailing loss-of-function mutations of helicases and a pharmacological inhibitor interfering with lipid metabolism and, hence, decreasing viperin activity indicate that methionine oxidation potently increases the stability and enzyme activity of these helicases that are critical for DNA replication and immune activation. Our work uncovers a pivotal role of viperin in catalyzing the methionine oxidation of helicases that are implicated in diverse fundamental biological processes.


Assuntos
Metionina/metabolismo , Proteínas/metabolismo , RNA Helicases/metabolismo , Antivirais/farmacologia , Replicação do DNA/efeitos dos fármacos , Células HEK293 , Humanos , Interferons/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Fish Shellfish Immunol ; 93: 492-499, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31381973

RESUMO

TANK-binding kinase 1 (TBK1) is an important kinase that regulates the activation of interferon regulatory factor 3/7 (IRF3/7) to induce type I interferon (IFN-I) production in antiviral immune responses. However, in long-term virus-host crosstalk, viruses have evolved elaborate strategies to evade host immune defense mechanisms. In the present study, we found that grass carp (Ctenopharyngodon idella) reovirus (GCRV) hijacks TBK1 to escape IRF7-IFN-Is signaling activation. In brief, GCRV inhibited TBK1 activation by restaining K63-linked ubiquitination of TBK1 and promoting its K48-linked ubiquitination. This regulation resulted in that under low titer of GCRV infection, TBK1 overexpression specifically supressed promoter activity and phosphorylation of IRF7 and induction of downstream IFN1and IFN3. qRT-PCR data uncovered that TBK1 negatively regulated IRF7, IFN1 and IFN3 transcription levels under low viral titer infection. Along with enhancement of GCRV titers, TBK1 swiched its function to up-regulate IRF7, IFN1 and IFN3 mRNA levels. Accordingly, TBK1 promoted GCRV replication at low infected titer, but inhibited GCRV replication at high infected titer. All these results revealed a viral evasion strategy that GCRV utilizes TBK1 to block cellular IFN responses at low titers or early stages in fish species, which will lay a foundation for further researching on host-virus interactions and developing novel antiviral strategies in lower vertebrates.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/imunologia , Animais , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária
16.
Viruses ; 11(6)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234396

RESUMO

Herpesviruses can be detected by pattern recognition receptors (PRRs), which then activate downstream adaptors, kinases and transcription factors (TFs) to induce the expression of interferons (IFNs) and inflammatory cytokines. IFNs further activate the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, inducing the expression of interferon-stimulated genes (ISGs). These signaling events constitute host innate immunity to defeat herpesvirus infection and replication. A hallmark of all herpesviruses is their ability to establish persistent infection in the presence of active immune response. To achieve this, herpesviruses have evolved multiple strategies to suppress or exploit host innate immune signaling pathways to facilitate their infection. This review summarizes the key host innate immune components and their regulation by herpesviruses during infection. Also we highlight unanswered questions and research gaps for future perspectives.


Assuntos
Infecções por Herpesviridae/imunologia , Herpesviridae/crescimento & desenvolvimento , Herpesviridae/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Transdução de Sinais , Animais , Humanos , Evasão da Resposta Imune
17.
Front Immunol ; 10: 3003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010127

RESUMO

TLR22 exists in nearly all the poikilothermic vertebrates and plays a central role in the initiation of innate immunity and activation of adaptive immunity. TLR22 signaling pathway has been characterized in detail in fugu (Takifugu rubripes). Here, we thoroughly remold the localization and signaling pathways of TLR22. We characterized TLR22a and TLR22b in grass carp (Ctenopharyngodon idella), designated as CiTLR22a and CiTLR22b, and explored the ligand(s), adaptor(s), and signaling pathway(s). Results show that both CiTLR22a and CiTLR22b localize to lysosome, acidic compartment. Correspondingly, CiTLR22a and CiTLR22b directly bind and respond to dsRNA analog poly(I:C) at pH 5, but not at pH 7.4, the physiological pH. Moreover, CiTLR22a and CiTLR22b exhibit antagonistic function in signal transmission, wherein CiTLR22a facilitates the protein and phosphorylation levels of IRF7 and enhances the promoter activities of major IFNs and NF-κBs, while CiTLR22b downregulates IRF7 phosphorylation and IRF3 protein level and suppresses the IFN and NF-κB pathways. Further investigations revealed that CiTLR22a restrains grass carp reovirus (GCRV) replication and protects cells from GCRV infection, whereas CiTLR22b plays a negative role in response to GCRV infection. This is the first time to systematically clarify the signaling pathways of two isotype TLR22s; especially, subcellular localization and adaptor are different from previous TLR22 report, which results from technical limitations. The results will serve the antiviral immune mechanisms in poikilothermic vertebrates and evolutionary immunology.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Infecções por Reoviridae/veterinária , Receptores Toll-Like/metabolismo , Animais , Carpas , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Transporte Proteico , Reoviridae/genética , Reoviridae/fisiologia , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Transdução de Sinais , Receptores Toll-Like/genética
18.
J Biol Chem ; 293(45): 17387-17401, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237170

RESUMO

Autophagy plays many physiological and pathophysiological roles. However, the roles and the regulatory mechanisms of autophagy in response to viral infections are poorly defined in teleost fish, such as grass carp (Ctenopharyngodon idella), which is one of the most important aquaculture species in China. In this study, we found that both grass carp reovirus (GCRV) infection and hydrogen peroxide (H2O2) treatment induced the accumulation of reactive oxygen species (ROS) in C. idella kidney cells and stimulate autophagy. Suppressing ROS accumulation with N-acetyl-l-cysteine significantly inhibited GCRV-induced autophagy activation and enhanced GCRV replication. Although ROS-induced autophagy, in turn, restricted GCRV replication, further investigation revealed that the multifunctional cellular protein high-mobility group box 1b (HMGB1b) serves as a heat shock protein 70 (HSP70)-dependent, pro-autophagic protein in grass carp. Upon H2O2 treatment, cytoplasmic HSP70 translocated to the nucleus, where it interacted with HMGB1b and promoted cytoplasmic translocation of HMGB1b. Overexpression and siRNA-mediated knockdown assays indicated that HSP70 and HMGB1b synergistically enhance ROS-induced autophagic activation in the cytoplasm. Moreover, HSP70 reinforced an association of HMGB1b with the C. idella ortholog of Beclin 1 (a mammalian ortholog of the autophagy-associated yeast protein ATG6) by directly interacting with C. idella Beclin 1. In summary, this study highlights the antiviral function of ROS-induced autophagy in response to GCRV infection and reveals the positive role of HSP70 in HMGB1b-mediated autophagy initiation in teleost fish.


Assuntos
Autofagia , Cipriniformes , Doenças dos Peixes , Proteínas de Peixes/metabolismo , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções por Reoviridae , Reoviridae/metabolismo , Animais , Células Cultivadas , Cipriniformes/metabolismo , Cipriniformes/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Rim/patologia , Rim/virologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária
19.
J Immunol ; 200(2): 573-585, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29229676

RESUMO

TLRs are pivotal pattern recognition receptors in initiating innate immunity and triggering adaptive immunity. TLR pathways have been comprehensively investigated in mammals. However, the teleost-specific TLR19 pathway remains largely unknown. In this study, we identified TLR19 from grass carp (Ctenopharyngodon idella), and explored the ligand, adaptor, and signaling pathways. Pathogen-associated molecular pattern binding and luciferase activity assays indicate that TLR19 recognizes and responds to dsRNA analog (polyinosinic:polycytidylic acid). Confocal fluorescence microscopy demonstrates that TLR19 is synthesized in ribosomes not binding on endoplasmic reticulum, then transfers to early endosome post-polyinosinic:polycytidylic acid stimulation. Fluorescence colocalization and immunoprecipitation experiments confirm TLR19 interacts with adaptor TRIF, not MyD88, TIRAP, or SARM1. TLR19 facilitates protein and phosphorylation levels of IRF3, inhibits phosphorylation of IRF7. TLR19 enhances the promoter activities and mRNA expressions of major IFNs and NF-κBs; in contrast, grass carp TLR3 just significantly motivates IFN1 expression post-grass carp reovirus (GCRV) infection. Further investigations reveal that TLR19 inhibits GCRV replication by overexpression, knockdown, Western blotting techniques and virus titer assays, and protects cells from GCRV infection by flow cytometry and MTT method. Collectively, these results demonstrate that teleost-specific TLR19 recognizes dsRNA, recruits adaptor molecule TRIF, enhances IRF3 protein and phosphorylation levels, triggers both IFN and NF-κB pathways, and prevents viral proliferation. This is the first attempt to systematically clarify the TLR19 signaling pathway, which is the third TLR member recognizing dsRNA. The results will serve the antiviral immune mechanisms in teleost and evolutionary immunology.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Carpas , Endossomos/metabolismo , Interferons/metabolismo , NF-kappa B/metabolismo , RNA de Cadeia Dupla/metabolismo , Infecções por Reoviridae/veterinária , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Expressão Gênica , Regulação da Expressão Gênica , Interferons/genética , Modelos Biológicos , NF-kappa B/genética , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , Reoviridae/fisiologia , Transdução de Sinais , Receptores Toll-Like/genética , Replicação Viral
20.
Sci Rep ; 7(1): 4551, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674382

RESUMO

Hemorrhagic disease caused by grass carp reovirus (GCRV) has severely threatened the grass carp (Ctenopharyngodon idella) cultivation industry. It is noteworthy that the resistance against GCRV infection was reported to be inheritable, and identified at both individual and cellular levels. Therefore, this work was inspired and dedicated to unravel the molecular mechanisms of fate decision post GCRV infection in related immune cells. Foremost, the resistant and susceptible CIK (C. idella kidney) monoclonal cells were established by single cell sorting, subculturing and infection screening successively. RNA-Seq, MeDIP-Seq and small RNA-Seq were carried out with C1 (CIK cells), R2 (resistant cells) and S3 (susceptible cells) groups. It was demonstrated that genome-wide DNA methylation, mRNA and microRNA expression levels in S3 were the highest among three groups. Transcriptome analysis elucidated that pathways associated with antioxidant activity, cell proliferation regulation, apoptosis activity and energy consuming might contribute to the decision of cell fates post infection. And a series of immune-related genes were identified differentially expressed across resistant and susceptible groups, which were negatively modulated by DNA methylation or microRNAs. To conclude, this study systematically uncovered the regulatory mechanism on the resistance from epigenetic perspective and provided potential biomarkers for future studies on resistance breeding.


Assuntos
Carpas/virologia , Resistência à Doença/genética , Epigênese Genética , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Animais , Biomarcadores , Células Cultivadas , Metilação de DNA , Suscetibilidade a Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA Mensageiro/genética , Pequeno RNA não Traduzido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA