Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36496778

RESUMO

The objective of this study was to investigate a connection between CH4 emissions and reticulorumen pH and temperature. During the experiment, we registered the following parameters: reticulorumen pH (pH), reticulorumen temperature (RR temp.), reticulorumen temperature without drinking cycles, ambient temperature, ambient relative humidity, cow activity, heat index, temperature−humidity index (THI), and methane emissions (CH4). The experimental animals were divided into two groups based on the reticulorumen pH: 1. pH < 6.22 and 2. pH 6.22−6.42. We found that cows assigned to the second pH class had higher (46.18%) average values for methane emissions (p < 0.01). For the other indicators, higher average values were detected in cows of the first pH class, RR temperature (2.80%), relative humidity (20.96%), temperature−humidity index (2.47%) (p < 0.01), and temperature (3.93%) (p < 0.05), which were higher compared to cows of the second pH class. Reticulorumen pH was highly negatively correlated with THI and temperature (r = −0.667 to 0.717, p < 0.001) and somewhat negatively with heat index, relative humidity, and RR temperature (r = −0.536, p < 0.001; r = −0.471 to 0.456, p < 0.01). Cows with a higher risk of heat stress had a higher risk of lower reticulorumen pH.

2.
Front Vet Sci ; 8: 689375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350229

RESUMO

Some European countries have successfully implemented country-specific control programs (CPs) for infectious cattle diseases that are not regulated or are regulated only to a limited extent at the European Union (EU) level. Examples of such diseases include bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR), and Johne's disease (JD). The CPs vary between countries in the design and quality of collected data as well as methods used to detect infection and estimate prevalence or probability of freedom from infection. Differences in disease status between countries and non-standardized approaches to assess freedom from infection pose a risk for countries with CPs for non-regulated diseases as infected animals may influence the progress of the disease control or eradication program. The implementation of output-based standards allows estimation and comparison of the probability of freedom for non-regulated cattle diseases in European countries. The aim of the current study was to assess the existence and quality of data that could be used for estimating freedom from infection in European countries. The online data collection tool was sent to 32 countries participating in the SOUND control COST Action and was completed by 24 countries. Data on cattle demographics and data from CPs of IBR and BVD exist in more than 50% of the response countries. However, data describing risk factors and CP of JD was reported as existing in <25% of the countries. The overall quality of data in the sections on demographics and CPs of IBR and BVD were evaluated as "good", but risk factors and JD data were mostly evaluated as "fair." Data quality was considered less good mainly due to two quality criteria: accessibility and accuracy. The results of this study show that the quantity and quality of data about cattle populations and CPs are relatively similar in many surveyed countries. The outcome of this work provides an overview of the current situation in the European countries regarding data on EU non-regulated cattle diseases and will further assist in the development and implementation of output-based standards.

3.
Front Vet Sci ; 8: 656336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981745

RESUMO

Various European Member States have implemented control or eradication programmes for endemic infectious diseases in cattle. The design of these programmes varies between countries and therefore comparison of the outputs of different control programmes is complex. Although output-based methods to estimate the confidence of freedom resulting from these programmes are under development, as yet there is no practical modeling framework applicable to a variety of infectious diseases. Therefore, a data collection tool was developed to evaluate data availability and quality and to collect actual input data required for such a modeling framework. The aim of the current paper is to present the key learnings from the process of the development of this data collection tool. The data collection tool was developed by experts from two international projects: STOC free (Surveillance Tool for Outcome-based Comparison of FREEdom from infection, www.stocfree.eu) and SOUND control (Standardizing OUtput-based surveillance to control Non-regulated Diseases of cattle in the EU, www.sound-control.eu). Initially a data collection tool was developed for assessment of freedom of bovine viral diarrhea virus in six Western European countries. This tool was then further generalized to enable inclusion of data for other cattle diseases i.e., infectious bovine rhinotracheitis and Johne's disease. Subsequently, the tool was pilot-tested by a Western and Eastern European country, discussed with animal health experts from 32 different European countries and further developed for use throughout Europe. The developed online data collection tool includes a wide range of variables that could reasonably influence confidence of freedom, including those relating to cattle demographics, risk factors for introduction and characteristics of disease control programmes. Our results highlight the fact that data requirements for different cattle diseases can be generalized and easily included in a data collection tool. However, there are large differences in data availability and comparability across European countries, presenting challenges to the development of a standardized data collection tool and modeling framework. These key learnings are important for development of any generic data collection tool for animal disease control purposes. Further, the results can facilitate development of output-based modeling frameworks that aim to calculate confidence of freedom from disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA