Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754099

RESUMO

The COVID-19 pandemic has emphasized the urgent need for point-of-care methods suitable for the rapid and reliable diagnosis of viral infections. To address this demand, we report the rapid, label-free simultaneous determination of two SARS-CoV-2 proteins, namely, the nucleoprotein and the receptor binding domain peptide of S1 protein, by implementing a bioanalytical device based on Multi Area Reflectance Spectroscopy. Simultaneous detection of these two proteins is achieved by using silicon chips with adjacent areas of different silicon dioxide thickness on top, each of which is modified with an antibody specific to either the nucleoprotein or the receptor binding domain of SARS-CoV-2. Both areas were illuminated by a single probe that also collected the reflected light, directing it to a spectrometer. The online conversion of the combined reflection spectra from the two silicon dioxide areas into the respective adlayer thickness enabled real-time monitoring of immunoreactions taking place on the two areas. Several antibodies have been tested to define the pair, providing the higher specific signal following a non-competitive immunoassay format. Biotinylated secondary antibodies and streptavidin were used to enhance the specific signal. Both proteins were detected in less than 12 min, with detection limits of 1.0 ng/mL. The assays demonstrated high repeatability with intra- and inter-assay coefficients of variation lower than 10%. Moreover, the recovery of both proteins from spiked samples prepared in extraction buffer from a commercial self-test kit for SARS-CoV-2 collection from nasopharyngeal swabs ranged from 90.0 to 110%. The short assay duration in combination with the excellent analytical performance and the compact instrument size render the proposed device and assay suitable for point-of-care applications.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Análise Espectral , Nucleoproteínas , Anticorpos
2.
Talanta ; 258: 124403, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889192

RESUMO

The simultaneous determination of two inflammatory diseases biomarkers, namely procalcitonin (PCT) and interleukin-6 (IL-6), in human serum samples employing a Point-of-Care device based on Multi Area Reflectance Spectroscopy is presented. Dual-analyte detection was achieved using silicon chips with two silicon dioxide areas of different thickness, one functionalized with an antibody specific for PCT and the other with an antibody specific for IL-6. The assay included reaction of immobilized capture antibodies with mixtures of PCT and IL-6 calibrators with the biotinylated detection antibodies, streptavidin and biotinylated-BSA. The reader provided for the automated execution of the assay procedure, as well as for the collection and processing of the reflected light spectrum, the shift of which is correlated to analytes concentration in the sample. The assay was completed in 35 min and the detection limits for PCT and IL-6 were 2.0 and 0.01 ng/mL respectively. The dual-analyte assay was characterized by high reproducibility (the intra- and inter-assay coefficients of variation were less than 10% for both analytes) and accuracy (the percent recovery values ranged from 80 to 113% for both analytes). Moreover, the values determined for the two analytes in human serum samples with the assay developed were in good agreement with the values determined for the same samples by clinical laboratory methods. These results support the potential of the proposed biosensing device application for inflammatory biomarkers determination at the Point-of-Need.


Assuntos
Técnicas Biossensoriais , Interleucina-6 , Pró-Calcitonina , Humanos , Anticorpos Imobilizados/química , Biomarcadores , Imunoensaio/métodos , Interleucina-6/sangue , Sistemas Automatizados de Assistência Junto ao Leito , Pró-Calcitonina/sangue , Reprodutibilidade dos Testes
3.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832050

RESUMO

Cortisol is a steroid hormone that is involved in a broad range of physiological processes in human/animal organisms. Cortisol levels in biological samples are a valuable biomarker, e.g., of stress and stress-related diseases; thus, cortisol determination in biological fluids, such as serum, saliva and urine, is of great clinical value. Although cortisol analysis can be performed with chromatography-based analytical techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), conventional immunoassays (radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), etc.) are considered the "gold standard" analytical methodology for cortisol, due to their high sensitivity along with a series of practical advantages, such as low-cost instrumentation, an assay protocol that is fast and easy to perform, and high sample throughput. Especially in recent decades, research efforts have focused on the replacement of conventional immunoassays by cortisol immunosensors, which may offer further improvements in the field, such as real-time analysis at the point of care (e.g., continuous cortisol monitoring in sweat through wearable electrochemical sensors). In this review, most of the reported cortisol immunosensors, mainly electrochemical and also optical ones, are presented, focusing on their immunosensing/detection principles. Future prospects are also briefly discussed.


Assuntos
Técnicas Biossensoriais , Hidrocortisona , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Imunoensaio
4.
Biosensors (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291014

RESUMO

Ochratoxin A (OTA) is one of the most toxic naturally encountered contaminants and is found in a variety of foods and beverages, including cereals and wine. Driven by the strict regulations regarding the maximum allowable OTA concentration in foodstuff and the necessity for on-site determination, the development of fast and sensitive methods for the OTA determination in cereal flours and wine samples, based on white light reflectance spectroscopy, is presented. The method relied on appropriately engineered silicon chips, on top of which an OTA-protein conjugate was immobilized. A polyclonal antibody against OTA was then employed to detect the analyte in the framework of a competitive immunoassay; followed by the subsequent addition of a biotinylated secondary antibody and streptavidin for signal enhancement. A small size instrument performed all assay steps automatically and the bioreactions were monitored in real time as the software converted the spectral shifts into effective biomolecular adlayer thickness increase. The assay developed had a detection limit of 0.03 ng/mL and a working range up to 200 ng/mL. The assay lasted 25 min (less than 1h, including calibrators/antibody pre-incubation) and was accomplished following a simple sample preparation protocol. The method was applied to corn and wheat flour samples and white and red wines with recovery values ranging from 87.2 to 111%. The simplicity of the overall assay protocol and convenient instrumentation demonstrates the potential of the immunosensor developed for OTA detection at the point of need.


Assuntos
Técnicas Biossensoriais , Ocratoxinas , Vinho , Grão Comestível/química , Vinho/análise , Farinha , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Silício/química , Estreptavidina , Triticum , Ocratoxinas/análise , Análise Espectral
5.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890791

RESUMO

Optical immunosensors represent a research field of continuously increasing interest due to their unique features, which can mainly be attributed to the high-affinity and specific antibodies they use as biorecognition elements, combined with the advantageous characteristics of the optical transducing systems these sensors employ. The present work describes new developments in the field, focusing on recent bioanalytical applications (2021-2022) of labeled and label-free optical immunosensors. Special attention is paid to a specific immunosensing platform based on White Light Reflectance Spectroscopy, in which our labs have gained specific expertise; this platform is presented in detail so as to include developments, improvements, and bioanalytical applications since the mid-2000s. Perspectives on the field are been briefly discussed as well, highlighting the potential of optical immunosensors to eventually reach the state of a reliable, highly versatile, and widely applicable analytical tool suitable for use at the Point-of-Care.


Assuntos
Técnicas Biossensoriais , Anticorpos/química , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Análise Espectral
6.
Biosensors (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884310

RESUMO

The consumption of water and milk contaminated with bacteria can lead to foodborne disease outbreaks. For this reason, the development of rapid and sensitive analytical methods for bacteria detection is of primary importance for public health protection. Here, a miniaturized immunosensor based on broadband Mach-Zehnder Interferometry for the simultaneous determination of S. typhimurium and E. coli O157:H7 in drinking water and milk is presented. For the assay, mixtures of bacteria solutions with anti-bacteria-specific antibodies were run over the chip, followed by solutions of biotinylated anti-species-specific antibody and streptavidin. The assay was fast (10 min for water, 15 min for milk), accurate, sensitive (LOD: 40 cfu/mL for S. typhimurium; 110 cfu/mL for E. coli) and reproducible. The analytical characteristics achieved combined with the small chip size make the proposed biosensor suitable for on-site bacteria determination in drinking water and milk samples.


Assuntos
Técnicas Biossensoriais , Água Potável , Escherichia coli O157 , Animais , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos , Imunoensaio/métodos , Leite/microbiologia , Salmonella typhimurium , Silício
7.
Biosensors (Basel) ; 11(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436070

RESUMO

The development of methods and miniaturized systems for fast and reliable quantitative determinations at the Point-of-Care is a top challenge and priority in diagnostics. In this work, a compact bench-top system, based on White Light Reflectance Spectroscopy, is introduced and evaluated in an application with high clinical interest, namely the determination of C-Reactive protein (CRP) in human blood samples. The system encompassed all the necessary electronic and optical components for the performance of the assay, while the dedicated software provided the sequence and duration of assay steps, the reagents flow rate, the real-time monitoring of sensor response, and data processing to deliver in short time and accurately the CPR concentration in the sample. The CRP assay included two steps, the first comprising the binding of sample CRP onto the chip immobilized capture antibody and the second the reaction of the surface immunosorbed CRP molecules with the detection antibody. The assay duration was 12 min and the dynamic range was from 0.05 to 200 µg/mL, covering both normal values and acute inflammation incidents. There was an excellent agreement between CRP values determined in human plasma samples using the developed device with those received for the same samples by a standard diagnostic laboratory method.


Assuntos
Técnicas Biossensoriais , Proteína C-Reativa/análise , Sistemas Automatizados de Assistência Junto ao Leito , Anticorpos , Desenho de Equipamento , Humanos , Luz , Limite de Detecção , Análise Espectral
8.
Biosensors (Basel) ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068345

RESUMO

Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any "matrix-effect" on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.


Assuntos
Benzimidazóis/análise , Carbamatos/análise , Sucos de Frutas e Vegetais/análise , Fungicidas Industriais/análise , Imunoensaio , Luz , Análise Espectral
9.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920297

RESUMO

Biosensors represent an attractive approach for fast bacteria detection. Here, we present an optical biosensor for the detection of Salmonella typhimurium lipopolysaccharide (LPS) and Salmonella bacteria in drinking water, based on white light reflectance spectroscopy. The sensor chip consisted of a Si die with a thin SiO2 layer on top that was transformed into a biosensor through the immobilization of Salmonella LPS. The optical setup included a reflection probe with seven 200 µm fibers, a visible and near-infrared light source, and a spectrometer. The six fibers at the reflection probe circumference were coupled with the light source and illuminated the biosensor chip vertically, whereas the central fiber collected the reflected light and guided it to the spectrometer. A competitive immunoassay configuration was adopted for the analysis. Accordingly, a mixture of LPS or bacteria solution, pre-incubated for 15 min, with an anti-Salmonella LPS antibody was pumped over the chip followed by biotinylated secondary antibody and streptavidin for signal enhancement. The binding of the free anti-Salmonella antibody to chip-immobilized LPS led to a shift of the reflectance spectrum that was inversely related to the analyte concentration (LPS or bacteria) in the calibrators or samples. The total assay duration was 15 min, and the detection limits achieved were 4 ng/mL for LPS and 320 CFU/mL for bacteria. Taking into account the low detection limits, the short analysis time, and the small size of the chip and instrumentation employed, the proposed immunosensor could find wide application for bacteria detection in drinking water.


Assuntos
Técnicas Biossensoriais , Água Potável , Imunoensaio , Salmonella typhimurium , Dióxido de Silício , Análise Espectral
10.
Analyst ; 146(2): 529-537, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179631

RESUMO

Mozzarella di Bufala Campana and Feta are two cheeses with Protected Designation of Origin the fraudulent adulteration of which with bovine milk must be routinely checked to ensure that consumers actually buy these high-end products and avoid health issues related to bovine milk allergy. Here, we employed, for the first time, a silicon-based photonic immunosensor for the detection of mozzarella and feta adulteration with bovine milk. The photonic immunosensor used relies on Mach-Zehnder interferometers monolithically integrated along with their respective light sources on a silicon chip. A rabbit polyclonal antiserum raised against bovine κ-casein was used for the development of a competitive immunoassay realized in three steps, including a reaction with the antiserum, a biotinylated anti-rabbit IgG antibody, and streptavidin. The implementation of this assay configuration significantly reduced the non-specific signal due to the cheese matrix, and allowed completion of the assay in ∼9 min. After optimization of all assay conditions, bovine cheese could be quantified in mozzarella or feta at concentrations as low as 0.5 and 0.25% (w/w), respectively; both quantification limits were below the maximum allowable content of bovine milk in mozzarella and feta (1% w/w) according to the EU regulations. Equally important, the assays were reproducible with intra- and inter-assay coefficients of variation <10%, and exhibited a wide linear dynamic range that extended up to 50 and 25% (w/w) for mozzarella and feta, respectively. Taking into account its performance, the proposed immunosensor may be transformed to a new tool against fraudulent activities in the dairy industry.


Assuntos
Técnicas Biossensoriais/métodos , Queijo/análise , Imunoensaio/métodos , Leite , Fótons , Silício/química , Animais , Bovinos , Contaminação de Alimentos , Qualidade dos Alimentos , Fatores de Tempo
11.
Biosensors (Basel) ; 10(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113758

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by certain Fusarium species and found in a high percentage of wheat and maize grains cultured worldwide. Although not so toxic as other mycotoxins, it exhibits both chronic and acute toxicity, and therefore methods for its fast and accurate on-site determination are highly desirable. In the current work, we employ an optical immunosensor based on White Light Reflectance Spectroscopy (WLRS) for the fast and sensitive immunochemical label-free determination of DON in wheat and maize samples. The assay is completed in 12 min and has a quantification limit of 2.5 ng/mL in buffer corresponding to 125 µg/kg in whole grain which is lower than the maximum allowable concentrations set by the regulatory authorities for grains intended for human consumption. Several extraction protocols have been compared, and the highest recovery (>90%) was achieved employing distilled water. In addition, identical calibration curves were received in buffer and wheat/maize extraction matrix providing the ability to analyze the grain samples using calibrators in buffer. Recoveries of DON from spiked wheat and maize grain samples ranged from 92.0(±4.0) to 105(±4.0)%. The analytical performance of the WLRS immunosensor, combined with the short analysis time and instrument portability, supports its potential for on-site determinations.


Assuntos
Grão Comestível/microbiologia , Micotoxinas/análise , Tricotecenos/análise , Análise de Alimentos , Microbiologia de Alimentos , Fusarium , Humanos , Sistema Imunitário , Análise Espectral , Triticum
12.
Talanta ; 214: 120854, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278411

RESUMO

An optical immunosensor based on White Light Reflectance Spectroscopy is described for the determination of the herbicide glyphosate in drinking water samples. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. Glyphosate determination is accomplished by functionalizing the chip with a protein conjugate of the herbicide followed by a competitive immunoassay format. Prior to the assay, glyphosate derivatization in the calibrators and/or the samples was performed through reaction with succinic anhydride. Under the optimized assay protocol, a detection limit of 10 pg mL-1 was achieved. Recovery values ranging from 90.0 to 110% were determined in spiked bottled and tap water samples, demonstrating the accuracy of the method. In addition, the sensor could be regenerated and re-used for at least 14 times without statistically significant effect on the assay sensitivity and accuracy. The excellent analytical performance and short analysis time (approx. 25 min), combined with the small sensor size, should be helpful for the fast on-site determination of glyphosate in drinking water samples.

13.
Biosens Bioelectron ; 153: 112035, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989941

RESUMO

Biosensing through White Light Reflectance Spectroscopy (WLRS) is based on monitoring the shift of interference spectrum due to the binding reactions occurring on top of a thin SiO2 layer deposited on a silicon chip. Multi-analyte determinations were possible through scanning of a single sensor chip on which multiple bioreactive areas have been created. Nonetheless, the implementation of moving parts increased the instrumentation size and complexity and limited the potential for on-site determinations. Thus, in this work, a new approach, which is based on patterning the sensor surface to create areas with different SiO2 thickness, is developed and evaluated for multi-analyte determinations with the WLRS set-up. The areas of different thickness can be interrogated by a single reflection probe placed on a fixed position over the chip and the reflection spectrum recorded is de-convoluted to the spectra corresponding to each area allowing the simultaneous monitoring of the bioreactions taking place at each one of them. The combination of different areas thickness was optimized using chips with two areas for single analyte assays. The optimum chips were then used for the simultaneous determination of two mycotoxins, aflatoxin B1 and fumonisin B1. A competitive immunoassay format was followed employing immobilization of mycotoxin-protein conjugates onto the SiO2 of different thickness. It was found that the dual-analyte assays had identical analytical characteristics with the respective single-analyte ones. The detection limits achieved were 0.05 ng/mL for aflatoxin B1 and 1.0 ng/mL for fumonisin B1, with dynamic ranges extending up to 5.0 and 50 ng/mL, respectively. The sensor was also evaluated for the determination of the two mycotoxins in whole grain samples (wheat and maize). The extraction protocol was optimized and recoveries ranging from 85 to 115% have been determined. Due to lack of moving parts, the novel multi-analyte format is expected to considerably facilitate the built-up of a portable device for determination of analytes at the point-of-need.


Assuntos
Contaminação de Alimentos/análise , Micotoxinas/análise , Dióxido de Silício/química , Silício/química , Aflatoxina B1/análise , Animais , Anticorpos Monoclonais/química , Técnicas Biossensoriais , Desenho de Equipamento , Fumonisinas/análise , Imunoensaio , Luz , Limite de Detecção , Camundongos , Espectrofotometria , Propriedades de Superfície , Triticum/química , Zea mays/química
14.
J Hazard Mater ; 359: 445-453, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30059886

RESUMO

A label-free optical biosensor for the fast simultaneous determination of three mycotoxins, aflatoxin B1 (AFB1), fumonisin B1 (FB1) and deoxynivalenol (DON), in beer samples is presented. The biosensor is based on an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources onto a single chip. Multi-analyte determination is accomplished by functionalizing the sensing arms of individual MZIs with mycotoxin-protein conjugates. Assay is performed by pumping over the chip mixtures of calibrators or samples with a mixture of specific monoclonal antibodies, followed by reaction with a secondary anti-mouse IgG antibody. Reactions are monitored in real-time by continuously recording the MZI output spectra, which are then subjected to Discrete Fourier Transform to convert spectrum shifts to phase shifts. The detection limits achieved for AFB1, FB1 and DON were 0.8, 5.6 and 24 ng/ml, respectively, while the assay duration was 12 min. Recovery values ranging from 85 to 115% were determined in beer samples spiked with known concentrations of the three mycotoxins. In addition, beers of different types and origin were analysed with the biosensor developed and the results were compared with those provided by established laboratory methods, further supporting the accuracy of the proposed device.


Assuntos
Aflatoxina B1/análise , Cerveja/análise , Contaminação de Alimentos/análise , Fumonisinas/análise , Tricotecenos/análise , Aflatoxina B1/imunologia , Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais , Fumonisinas/imunologia , Imunoglobulina G/imunologia , Tricotecenos/imunologia
15.
J Hazard Mater ; 359: 67-75, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30014916

RESUMO

An optical immunosensor based on White Light Reflectance Spectroscopy for the simultaneous determination of the herbicides atrazine and paraquat in drinking water samples is demonstrated. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum due to reaction to effective biomolecular layer thickness. Dual-analyte determination is accomplished by functionalizing spatially distinct areas of the chip with protein conjugates of the two herbicides and scanning the surface with an optical reflection probe. A competitive immunoassay format was adopted, followed by reaction with secondary antibodies for signal enhancement. The sensor was highly sensitive with detection limits of 40 and 50 pg/mL for paraquat and atrazine, respectively, and the assay duration was 12 min. Recovery values ranging from 90.0 to 110% were determined for the two pesticides in spiked bottled and tap water samples, demonstrating the sensor accuracy. In addition, the sensor could be regenerated and re-used at least 20 times without significant effect on the assay characteristics. Its excellent analytical performance and short analysis time combined with the small sensor size should be helpful for fast on-site determinations of these analytes.


Assuntos
Atrazina/análise , Técnicas Biossensoriais , Herbicidas/análise , Paraquat/análise , Poluentes Químicos da Água/análise , Anticorpos/imunologia , Atrazina/imunologia , Herbicidas/imunologia , Imunoensaio , Luz , Paraquat/imunologia , Soroalbumina Bovina/imunologia , Análise Espectral/métodos , Poluentes Químicos da Água/imunologia
16.
Anal Chem ; 90(15): 9559-9567, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999303

RESUMO

A silicon-based miniaturized sensor chip combined with an advanced microfluidic module for the simultaneous, label-free immunochemical determination of four allergens, bovine milk protein, peanut protein, soy protein, and gliadin, is presented. The sensor chip consists of an array of 10 broad-band Mach-Zehnder interferometers (BB-MZIs) monolithically integrated on silicon, along with their respective broad-band light sources. The BB-MZIs were biofunctionalized with the targeted allergens and their responses during immunoreaction were monitored by multiplexing their transmission spectra through an external miniaturized spectrometer. The assay is performed by running mixtures of calibrators or samples with the antibodies against the four allergens followed by an antispecies specific antibodies solution. Employing a fluidic module of nearly one-dimensional geometry, that provided for uniform delivery of the reagents, CV values <6% were achieved for the responses of the 10 BB-MZIs, allowing for reliable multianalyte determinations. The analysis is completed in 6.5 min, and the detection limits were 0.04 µg/mL for bovine k-casein, 1.0 µg/mL for peanut protein, 0.80 µg/mL for soy protein, and 0.10 µg/mL for gliadin. The assays were accurate (recoveries 88-118%) and repeatable (intra- and interassay CVs <7% for all four allergens). Finally, the sensor was evaluated by analyzing samples from a cleaning in place system (CIP) of a dairy industry and the results obtained were in good agreement with those received by the respective ELISAs. The analytical characteristics of the sensor combined with the short analysis time and the small chip size make the proposed system an ideal tool for on-site multianalyte determinations.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/instrumentação , Interferometria/instrumentação , Silício/química , Animais , Arachis/química , Técnicas Biossensoriais/economia , Caseínas/análise , Bovinos , Análise de Alimentos/economia , Análise de Alimentos/instrumentação , Gliadina/análise , Interferometria/economia , Dispositivos Lab-On-A-Chip/economia , Limite de Detecção , Proteínas de Vegetais Comestíveis/análise , Proteínas de Soja/análise , Fatores de Tempo
17.
Biosensors (Basel) ; 7(4)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027976

RESUMO

The development of a sensing platform based on white light reflectance spectroscopy (WLRS) is presented. The evolution of the system, from polymer film characterization and sensing of volatile organic compounds to biosensor for the label-free determination of either high (e.g., proteins) or low molecular weight analytes (e.g., pesticides), is described. At the same time, the passage from single to multi-analyte determinations, and from a laboratory prototype set-up to a compact device appropriate for on-site determination, is outlined. The improvements made on both the sensor and the optical set-up, and the concomitant advances in the analytical characteristics and the robustness of the assays performed with the different layouts, are also presented. Finally, the future perspectives of the system, aiming for the creation of a standalone instrument to be used by non-experts, will be discussed.


Assuntos
Técnicas Biossensoriais , Análise Espectral/métodos
18.
Talanta ; 175: 443-450, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842014

RESUMO

A label-free biosensor based on white light reflectance spectroscopy for the determination of PSA as semen indicator in forensic samples is presented. The sensor is based on a two-step immunoassay which employs the same polyclonal anti-PSA antibody as capture and detection antibody followed by reaction with streptavidin as a signal enhancement step. The whole assay time was set to 10min; 5min reaction of immobilized antibody with the PSA calibrators or the samples, 3min reaction with the biotinylated anti-PSA antibody and 2min reaction with streptavidin. Following this protocol, a detection limit of 0.5ng/mL was achieved and the assay's linear response range extended up to 500ng/mL. Thus, taking into account the quantification limit of 1.0ng/mL and the average PSA concentration in semen (0.2-5.5mg/mL), semen quantities of a few nanoliters could be detected. The accuracy of the sensor developed was demonstrated through recovery (% recovery ranged from 89.6 to 106) and semen dilution experiments. A linear correlation was found for semen dilutions ranging from 5000 to 360,000. The lack of interference by other bodily fluids was confirmed by analysing stains of blood, urine and saliva prior to and after the addition of semen. Finally, the sensor was evaluated by analysing 51 forensic casework samples which were also analysed with a semi-quantitative membrane strip test (Seratec® PSA), through microscopic detection of spermatozoa, and male DNA identification through detection of Y chromosome. The results obtained with the sensor were in excellent agreement with those provided by an immunoradiometric assay kit (PSA-RIACT) and in complete agreement with the findings using the membrane strip assay, spermatozoa and Y chromosome detection. The excellent analytical performance and small size of the instrument make the sensor developed an attractive tool for use in forensic evidence screening for semen detection.


Assuntos
Técnicas Biossensoriais/métodos , Antígeno Prostático Específico/análise , Sêmen/química , Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Feminino , Medicina Legal/instrumentação , Medicina Legal/métodos , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Masculino , Estupro/diagnóstico , Análise Espectral/instrumentação , Análise Espectral/métodos
19.
Talanta ; 165: 458-465, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153283

RESUMO

An immunosensor for fast and accurate determination of C-reactive protein (CRP) in human serum samples based on an array of all-silicon broad-band Mach-Zehnder interferometers (BB-MZIs) is demonstrated. The detection was based on monitoring the spectral shifts during the binding of CRP on the antibody molecules that have been immobilized on the sensing arms of the BB-MZIs. By employing the reaction rate as the analytical signal the assay time was compressed to few minutes. The detection limit was 2.1ng/mL, the quantification limit was 4.2ng/mL and the linear dynamic range extended up to 100ng/mL. The measurements performed in human serum samples with the developed immunosensor were characterized by high repeatability and accuracy as it was demonstrated by dilution linearity and recovery experiments. In addition, the concentration values determined were in excellent agreement with those determined for the same samples by a standard clinical laboratory method. The compact size of the chip makes the proposed immunosensor attractive for incorporation into miniaturized devices for the determination of clinical analytes at the point-of-need.


Assuntos
Técnicas Biossensoriais/métodos , Proteína C-Reativa/análise , Desenho de Equipamento , Interferometria/instrumentação , Interferometria/métodos , Silício/química , Humanos , Limite de Detecção
20.
J Hazard Mater ; 323(Pt A): 75-83, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26988901

RESUMO

An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2). The chip was transformed to biosensor by functionalizing the MZIs sensing arms with an OTA-ovalbumin conjugate. OTA determination was performed by pumping over the chip mixtures of calibrators or samples with anti-OTA antibody following a competitive immunoassay format. An external miniaturized spectrometer was employed to continuously record the transmission spectra of each interferometer. Spectral shifts obtained due to immunoreaction were transformed to phase shifts through Discrete Fourier Transform. The assay had a detection limit of 2.0ng/ml and a dynamic range 4.0-100ng/ml in beer samples, recoveries ranging from 90.6 to 116%, and intra- and inter-assay coefficients of variation of 9% and 14%, respectively. The results obtained with the sensor using OTA-spiked beer samples spiked were in good agreement with those obtained by an ELISA developed using the same antibody. The good analytical performance of the biosensor and the small size of the proposed chip provide for the development of a portable instrument for point-of-need determinations.


Assuntos
Cerveja/análise , Técnicas Biossensoriais , Contaminação de Alimentos/análise , Interferometria , Ocratoxinas/análise , Silício/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Imunoensaio , Interferometria/instrumentação , Interferometria/métodos , Limite de Detecção , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA