Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 8(28): 25195-25208, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483203

RESUMO

Atorvastatin (ATV), a lipid-lowering agent, has low oral bioavailability due to its poor water solubility, permeability, and low dissolution rate. Therefore, pentaerythritol-EudragitRS100 co-processed excipients (PECE) were synthesized, and their feasibility as solid dispersion carriers (ATV-PECE-SD) for improving the solubility, permeability, and dissolution rate of ATV was explored. Solid dispersions were assessed in terms of particle size and zeta potential, and solubility, in vitro dissolution, and ex vivo permeation studies were studied. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were used as characterization tools. ATV-PECE-SD3 (1:4) formulations exhibited a small particle size with high stability. Physicochemical evaluation evidenced the formation of solid dispersion due to the involvement of weak electrostatic interaction between the polar functional groups of ATV and PECE carriers. ATV-PECE-SD3 (1:4) significantly enhanced the water solubility by ∼43-fold compared to pure ATV. In vitro dissolution studies showed that optimized formulation enhanced the dissolution rate of ATV compared to pure ATV. Ex vivo permeation results revealed that ATV-PECE-SD3 (1:4) enhanced the permeation rate of ATV compared to pure ATV. The optimized formulations significantly improved the dissolution rate of ATV in the fed state due to the food effect and micelle formation mechanism compared to the fasted state. The study concludes that co-processed excipients could be used as promising solid dispersion carriers to enhance the aqueous solubility, permeability, and dissolution rate of ATV.

3.
Pharmaceutics ; 14(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890289

RESUMO

The present research was aimed to develop a terbinafin hydrochloride (TH)-encapsulated solid lipid nanoparticles (SLNs) hydrogel for improved antifungal efficacy. TH-loaded SLNs were obtained from glyceryl monostearate (lipid) and Pluronic® F68 (surfactant) employing high-pressure homogenization. The ratio of drug with respect to lipid was optimized, considering factors such as desired particle size and highest percent encapsulation efficiency. Lyophilized SLNs were then incorporated in the hydrogel prepared from 0.2-1.0% w/v carbopol 934P and further evaluated for rheological parameters. The z-average, zeta potential and polydispersity index were found to be 241.3 nm, -15.2 mV and 0.415, respectively. The SLNs show a higher entrapment efficiency of about 98.36%, with 2.12 to 6.3602% drug loading. SEM images, XRD and the results of the DSC, FTIR show successful preparation of SLNs after freeze drying. The TH-loaded SLNs hydrogel showed sustained drug release (95.47 ± 1.45%) over a period of 24 h. The results reported in this study show a significant effect on the zone of inhibition than the marketed formulation and pure drug in Candida albicans cultures, with better physical stability at cooler temperatures. It helped to enhance skin deposition inthe ex vivostudy and improved, in vitro and in vivo, the antifungal activity.

4.
Int J Biol Macromol ; 171: 288-307, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33418046

RESUMO

A novel nanocarrier system of phospholipids complex loaded chitosan nanoparticles (FAPLC CNPs) was developed to improve the oral bioavailability and antioxidant potential of FA. FAPLC CNPs were optimized using a Box-Behnken Design (BBD). FAPLC CNPs were characterized using differential scanning calorimetry, Fourier transforms infrared spectroscopy, powder x-ray diffractometry, proton nuclear magnetic resonance, solubility, in vitro dissolution, ex vivo permeation, and in vivo antioxidant activity in carbon tetrachloride (CCl4)-induced albino rat model. The characterization studies indicated a formation of the complex as well as FAPLC CNPs. The FAPLC CNPs exhibited a lower particle size ~123.27 nm, PDI value ~0.31, and positive zeta potential ~32 mV respectively. Functional characterization studies revealed a significant improvement in the aqueous solubility, dissolution, and permeation rate of FAPLC and FAPLC CNPs compared to FA and FA CNPs. The FAPLC CNPs showed significant enhancement of in vivo antioxidant activity of FA by restoring the elevated marker enzymes in the CCl4-intoxicated rat model compared to FA CNPs. Moreover, the pharmacokinetic analysis demonstrated a significant enhancement of oral bioavailability of FA from FAPLC CNPs compared to FA CNPs. These findings show that FAPLC CNPs could be used as an effective nanocarrier for improving the oral delivery of FA.


Assuntos
Antioxidantes/química , Quitosana/química , Ácidos Cumáricos/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Fosfolipídeos/química , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Disponibilidade Biológica , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Técnicas de Química Analítica , Quitosana/administração & dosagem , Quitosana/farmacocinética , Ácidos Cumáricos/farmacocinética , Preparações de Ação Retardada , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Feminino , Absorção Intestinal , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Microscopia Eletrônica de Varredura , Modelos Químicos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Eletricidade Estática
5.
Arch Pharm (Weinheim) ; 354(1): e2000100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32909304

RESUMO

A series of 3-{2-[1-acetyl-5-(substitutedphenyl)-4,5-dihydropyrazol-3-yl]hydrazinylidene}-1,3-dihydro-2H-indol-2-ones 24-43 was synthesized using an appropriate synthetic route and evaluated experimentally by the maximal electroshock test. These compounds were evaluated for antidepressant and antianxiety activities. The most active compound, 3-{2-[1-acetyl-5-(4-chlorophenyl)-4,5-dihydropyrazol-3-yl]hydrazinylidene}-1,3-dihydro-2H-indol-2-one 25, exhibited an ED50 of 13.19 mmol/kg, a TD50 of 43.49 mmol/kg, and a high protective index of 3.29, compared with the standard drug diazepam. To get insights into the intermolecular interactions, molecular docking studies were performed at the active site of the GABAA receptor and the MAO-A enzyme. Molecular docking studies are also in agreement with the pharmacological evaluation with potent compounds, exhibiting docking scores of -1.5180 and 0.7458 for the GABAA receptor and MAO-A, respectively. The 3D-QSAR analysis was carried out by Vlife MDS engine 4.3.1, and a statistically reliable model with good predictive power (r2 = 0.7523, q2 = 0.3773) was achieved. The 3D-QSAR plots gave insights into the structure-activity relationship of these compounds, which may aid in the design of potent benzopyrrole derivatives as anticonvulsant agents. So, our research can make a great impact on those medicinal chemists who work on the development of anticonvulsant agents.


Assuntos
Anticonvulsivantes/farmacologia , Indóis/farmacologia , Pirazóis/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Diazepam/farmacologia , Desenvolvimento de Medicamentos , Eletrochoque , Feminino , Indóis/síntese química , Indóis/química , Masculino , Camundongos , Simulação de Acoplamento Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade
6.
Int J Biol Macromol ; 125: 1056-1068, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572051

RESUMO

Self-assembled nanocarriers (SANs) as a novel colloidal controlled delivery for docetaxel trihydrate (DTX) were engineered by high-pressure homogenization method to overcome the several clinical problems. Drug-excipient compatibility was studied using DSC and FTIR spectroscopy. The fabricated SANs was characterized by particle size, zeta potential, and SEM. QbD based central composite design of experiment was employed for formula optimization. The cell viability of DTX-hydroalcoholic solution (DTX-HA) and DTX-loaded SANs has been determined in MDA-MB-231 cell line by MTT assay. The stability study of selected SANs formulations were carried out at various storage conditions as per ICH guidelines. The summary of results obtained shows high drug content with higher entrapment efficiency (91.23 ±â€¯3.41% w/w) of DTX-loaded SANs. It shows diffusion controlled release of DTX over the period of 12 h which is higher than DTX-HA solution, releases the DTX within 4 h. The MTT assay expressed lower cellular viability and improved cell inhibition leads to increase cytotoxicity of formulations towards cells. The stability study reveals stability of DTX-loaded SANs formulations at various storage conditions over a period of three months. The strong experimental evidence confirms the SANs as an effective approach to formulate the controlled delivery system of antineoplastics with improved stability.


Assuntos
Antineoplásicos/farmacologia , Preparações de Ação Retardada/farmacologia , Docetaxel/farmacologia , Portadores de Fármacos/farmacologia , Nanopartículas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Docetaxel/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Análise Fatorial , Glicerídeos/química , Humanos , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poloxâmero/química
7.
AAPS PharmSciTech ; 17(2): 436-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26208439

RESUMO

The aim of the present study was to develop and evaluate a thermoresponsive depot system comprising of docetaxel-loaded cubosomes. The cubosomes were dispersed within a thermoreversible gelling system for controlled drug delivery. The cubosome dispersion was prepared by dilution method, followed by homogenization using glyceryl monooleate, ethanol and Pluronic® F127 in distilled water. The cubosome dispersion was then incorporated into a gelling system prepared with Pluronic® F127 and Pluronic® F68 in various ratios to formulate a thermoresponsive depot system. The thermoresponsive depot formulations undergo a thermoreversible gelation process i.e., they exists as free flowing liquids at room temperature, and transforms into gels at higher temperatures e.g., body temperature, to form a stable depot in aqueous environment. The mean particle size of the cubosomes in the dispersion prepared with Pluronic® F127, with and without the drug was found to be 170 and 280 nm, respectively. The prepared thermoresponsive depot system was evaluated by assessing various parameters like time for gelation, injectability, gel erosion, and in-vitro drug release. The drug-release studies of the cubosome dispersion before incorporation into the gelling system revealed that a majority (∼97%) of the drug was released within 12 h. This formulation also showed a short lag time (∼3 min). However, when incorporated into a thermoresponsive depot system, the formulation exhibited an initial burst release of ∼21%, and released only ∼39% drug over a period of 12 h, thus indicating its potential as a controlled drug delivery system.


Assuntos
Preparações de Ação Retardada/química , Nanoestruturas/química , Taxoides/química , Química Farmacêutica/métodos , Docetaxel , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Géis/química , Tamanho da Partícula , Poloxâmero/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA