RESUMO
Exciton-polaritons confined in plasmonic cavities are hybridized light-matter quasiparticles, with distinct optical characteristics compared to plasmons and excitons alone. Here, we demonstrate the electric tunability of a single polaritonic quantum dot operating at room temperature in electric-field tip-enhanced strong coupling spectroscopy. For a single quantum dot in the nanoplasmonic tip cavity with variable dc local electric field, we dynamically control the Rabi frequency with the corresponding polariton emission, crossing weak to strong coupling. We model the observed behaviors based on the quantum confined Stark effect in the strong coupling regime.
RESUMO
Coupling between molecular vibrations leads to collective vibrational states with spectral features sensitive to local molecular order. This provides spectroscopic access to the low-frequency intermolecular energy landscape. In its nanospectroscopic implementation, this technique of vibrational coupling nanocrystallography (VCNC) offers information on molecular disorder and domain formation with nanometer spatial resolution. However, deriving local molecular order relies on prior knowledge of the transition dipole magnitude and crystal structure of the underlying ordered phase. Here we develop a quantitative model for VCNC by relating nano-FTIR collective vibrational spectra to the molecular crystal structure from X-ray crystallography. We experimentally validate our approach at the example of a metal organic porphyrin complex with a carbonyl ligand as the probe vibration. This framework establishes VCNC as a powerful tool for measuring low-energy molecular interactions, wave function delocalization, nanoscale disorder, and domain formation in a wide range of molecular systems.
RESUMO
The emergent electronic, spin, and other quantum properties of 2D heterostructures of graphene and transition metal dichalcogenides are controlled by the underlying interlayer coupling and associated charge and energy transfer dynamics. However, these processes are sensitive to interlayer distance and crystallographic orientation, which are in turn affected by defects, grain boundaries, or other nanoscale heterogeneities. This obfuscates the distinction between interlayer charge and energy transfer. Here, nanoscale imaging in coherent four-wave mixing (FWM) and incoherent two-photon photoluminescence (2PPL) is combined with a tip distance-dependent coupled rate equation model to resolve the underlying intra- and inter-layer dynamics while avoiding the influence of structural heterogeneities in mono- to multi-layer graphene/WSe2 heterostructures. With selective insertion of hBN spacer layers, it is shown that energy, as opposed to charge transfer, dominates the interlayer-coupled optical response. From the distinct nano-FWM and -2PPL tip-sample distance-dependent modification of interlayer and intralayer relaxation by tip-induced enhancement and quenching, an interlayer energy transfer time of τ ET ≈ ( 0 . 35 - 0.15 + 0.65 ) $\tau _{\rm ET} \approx (0.35^{+0.65}_{-0.15})$ ps consistent with recent reports is derived. As a local probe technique, this approach highlights the ability to determine intrinsic sample properties even in the presence of large sample heterogeneity.
RESUMO
Understanding biomineralization relies on imaging chemically heterogeneous organic-inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved. Here, we combine nanoscale secondary ion mass spectroscopy (NanoSIMS) with spectroscopic IR s-SNOM imaging for simultaneous chemical, molecular, and elemental nanoimaging. At the example of Pinctada margaritifera mollusk shells we identify and resolve ~ 50 nm interlamellar protein sheets periodically arranged in regular ~ 600 nm intervals. The striations typically appear ~ 15 µm from the nacre-prism boundary at the interface between disordered neonacre to mature nacre. Using the polymorph distinctive IR-vibrational carbonate resonance, the nacre and prismatic regions are consistently identified as aragonite ([Formula: see text] cm-1) and calcite ([Formula: see text] cm-1), respectively. We observe previously unreported morphological features including aragonite subdomains encapsulated in extensions of the prism-covering organic membrane and regions of irregular nacre tablet formation coincident with dispersed organics. We also identify a ~ 200 nm region in the incipient nacre region with less well-defined crystal structure and integrated organics. These results show with the identification of the interlamellar protein layer how correlative nano-IR chemical and NanoSIMS elemental imaging can help distinguish different models proposed for shell growth in particular, and how organic function may relate to inorganic structure in other biomineralized systems in general.
RESUMO
Modulating anisotropic phonon polaritons (PhPs) can open new avenues in infrared nanophotonics. Promising PhP dispersion engineering through polariton hybridization has been demonstrated by coupling gated graphene to single-layer α-MoO3. However, the mechanism underlying the gate-dependent modulation of hybridization has remained elusive. Here, using IR nanospectroscopic imaging, we demonstrate active modulation of the optical response function, quantified in measurements of gate dependence of wavelength, amplitude, and dissipation rate of the hybrid plasmon-phonon polaritons (HPPPs) in both single-layer and twisted bilayer α-MoO3/graphene heterostructures. Intriguingly, while graphene doping leads to a monotonic increase in HPPP wavelength, amplitude and dissipation rate show transition from an initially anticorrelated decrease to a correlated increase. We attribute this behavior to the intricate interplay of gate-dependent components of the HPPP complex momentum. Our results provide the foundation for active polariton control of integrated α-MoO3 nanophotonics devices.
RESUMO
Many photonic and electronic molecular properties, as well as chemical and biochemical reactivities are controlled by fast intramolecular vibrational energy redistribution (IVR). This fundamental ultrafast process limits coherence time in applications from photochemistry to single quantum level control. While time-resolved multidimensional IR-spectroscopy can resolve the underlying vibrational interaction dynamics, as a nonlinear optical technique it has been challenging to extend its sensitivity to probe small molecular ensembles, achieve nanoscale spatial resolution, and control intramolecular dynamics. Here, we demonstrate a concept how mode-selective coupling of vibrational resonances to IR nanoantennas can reveal intramolecular vibrational energy transfer. In time-resolved infrared vibrational nanospectroscopy, we measure the Purcell-enhanced decrease of vibrational lifetimes of molecular vibrations while tuning the IR nanoantenna across coupled vibrations. At the example of a Re-carbonyl complex monolayer, we derive an IVR rate of (25±8) cm-1 corresponding to (450±150) fs, as is typical for the fast initial equilibration between symmetric and antisymmetric carbonyl vibrations. We model the enhancement of the cross-vibrational relaxation based on intrinsic intramolecular coupling and extrinsic antenna-enhanced vibrational energy relaxation. The model further suggests an anti-Purcell effect based on antenna and laser-field-driven vibrational mode interference which can counteract IVR-induced relaxation. Nanooptical spectroscopy of antenna-coupled vibrational dynamics thus provides for an approach to probe intramolecular vibrational dynamics with a perspective for vibrational coherent control of small molecular ensembles.
RESUMO
Transition-metal dichalcogenides (TMDs) have demonstrated a wide range of novel photonic, optoelectronic, and correlated electron phenomena for more than a decade. However, the coherent dynamics of their excitons, including possibly long dephasing times and their sensitivity to spatial heterogeneities, are still poorly understood. Here we implement adiabatic plasmonic nanofocused four-wave mixing (FWM) to image the coherent electron dynamics in monolayer WSe2. We observe nanoscale heterogeneities at room temperature with dephasing ranging from T2 â² 5 to T2 â³ 60 fs on length scales of 50-100 nm. We further observe a counterintuitive anticorrelation between FWM intensity and T2, with the weakest FWM emission at locations of longest coherence. We interpret this behavior as a nonlocal nano-optical interplay between spatial coherence of the nonlinear polarization and disorder-induced scattering. The results highlight the challenges associated with heterogeneities in TMDs limiting their photophysical properties, yet also the potential of their novel nonlinear optical phenomena.
RESUMO
Dark excitons in transition-metal dichalcogenides, with their long lifetimes and strong binding energies, provide potential platforms from photonic and optoelectronic applications to quantum information science even at room temperature. However, their spatial heterogeneity and sensitivity to strain is not yet understood. Here, we combine tip-enhanced photoluminescence spectroscopy with atomic force induced strain control to nanoimage dark excitons in WSe2 and their response to local strain. Dark exciton emission is facilitated by out-of-plane picocavity Purcell enhancement giving rise to spatially highly localized emission, providing for higher spatial resolution compared to bright exciton nanoimaging. Further, tip-antenna-induced dark exciton emission is enhanced in areas of higher strain associated with bubbles. In addition, active force control shows dark exciton emission to be more sensitive to strain with both compressive and tensile lattice deformation facilitating emission. This interplay between localized strain and Purcell effects provides novel pathways for nanomechanical exciton emission control.
RESUMO
Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform-a super-resolution time-frequency analytical method-to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems.
RESUMO
In high fluence applications of lead halide perovskites for light-emitting diodes and lasers, multi-polaron interactions and associated Auger recombination limit the device performance. However, the relationship of the ultrafast and strongly lattice coupled carrier dynamics to nanoscale heterogeneities has remained elusive. Here, in ultrafast visible-pump infrared-probe nano-imaging of the photoinduced carrier dynamics in triple cation perovskite films, a ~20 % variation in sub-ns relaxation dynamics with spatial disorder on tens to hundreds of nanometer is resolved. We attribute the non-uniform relaxation dynamics to the heterogeneous evolution of polaron delocalization and increasing scattering time. The initial high-density excitation results in faster relaxation due to strong many-body interactions, followed by extended carrier lifetimes at lower densities. These results point towards the missing link between the optoelectronic heterogeneity and associated carrier dynamics to guide synthesis and device engineering for improved perovskites device performance.
RESUMO
The importance of phonons in the strong correlation phenomena observed in twisted-bilayer graphene (TBG) at the so-called magic-angle is under debate. Here we apply gate-dependent micro-Raman spectroscopy to monitor the G band line width in TBG devices of twist angles θ = 0° (Bernal), â¼1.1° (magic-angle), and â¼7° (large-angle). The results show a broad and p-/n-asymmetric doping behavior at the magic angle, in clear contrast to the behavior observed in twist angles above and below this point. Atomistic modeling reproduces the experimental observations in close connection with the joint density of electronic states in the electron-phonon scattering process, revealing how the unique electronic structure of magic-angle TBGs influences the electron-phonon coupling and, consequently, the G band line width. Overall, the value of the G band line width in magic-angle TBG is larger when compared to that of the other samples, in qualitative agreement with our calculations.
RESUMO
Nanoscale infrared (IR) resonators with sub-diffraction limited mode volumes and open geometries have emerged as new platforms for implementing cavity quantum electrodynamics at room temperature. The use of IR nanoantennas and tip nanoprobes to study strong light-matter coupling of molecular vibrations with the vacuum field can be exploited for IR quantum control with nanometer spatial and femtosecond temporal resolution. In order to advance the development of molecule-based quantum nanophotonics in the mid-IR, we propose a generally applicable semi-empirical methodology based on quantum optics to describe light-matter interaction in systems driven by mid-IR femtosecond laser pulses. The theory is shown to reproduce recent experiments on the acceleration of the vibrational relaxation rate in infrared nanostructures. It also provides physical insights on the implementation of coherent phase rotations of the near-field using broadband nanotips. We then apply the quantum framework to develop general tip-design rules for the experimental manipulation of vibrational strong coupling and Fano interference effects in open infrared resonators. We finally propose the possibility of transferring the natural anharmonicity of molecular vibrational levels to the resonator near-field in the weak coupling regime to implement intensity-dependent phase shifts of the coupled system response with strong pulses and develop a vibrational chirping model to understand the effect. The semi-empirical quantum theory is equivalent to first-principles techniques based on Maxwell's equations, but its lower computational cost suggests its use as a rapid design tool for the development of strongly coupled infrared nanophotonic hardware for applications ranging from quantum control of materials to quantum information processing.
RESUMO
Ultrafast infrared nano-imaging has demonstrated access to ultrafast carrier dynamics on the nanoscale in semiconductor, correlated-electron, or polaritonic materials. However, mostly limited to short-lived transient states, the contrast obtained has remained insufficient to probe important long-lived excitations, which arise from many-body interactions induced by strong perturbation among carriers, lattice phonons, or molecular vibrations. Here, we demonstrate ultrafast infrared nano-imaging based on excitation modulation and sideband detection to characterize electron and vibration dynamics with nano- to micro-second lifetimes. As an exemplary application to quantum materials, in phase-resolved ultrafast nano-imaging of the photoinduced insulator-to-metal transition in vanadium dioxide, a distinct transient nano-domain behavior is quantified. In another application to lead halide perovskites, transient vibrational nano-FTIR spatially resolves the excited-state polaron-cation coupling underlying the photovoltaic response. These examples show how heterodyne pump-probe nano-spectroscopy with low-repetition excitation extends ultrafast infrared nano-imaging to probe elementary processes in quantum and molecular materials in space and time.
RESUMO
Polar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generationbased circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of nonchiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field-controllable order parameter.
RESUMO
A hierarchy of intramolecular and intermolecular interactions controls the properties of biomedical, photophysical, and novel energy materials. However, multiscale heterogeneities often obfuscate the relationship between microscopic structure and emergent function, and they are generally difficult to access with conventional optical and electron microscopy techniques. Here, we combine vibrational exciton nanoimaging in variable-temperature near-field optical microscopy (IR s-SNOM) with four-dimensional scanning transmission electron microscopy (4D-STEM), and vibrational exciton modeling based on density functional theory (DFT), to link local microscopic molecular interactions to macroscopic three-dimensional order. In the application to poly(tetrafluoroethylene) (PTFE), large spatio-spectral heterogeneities with C-F vibrational energy shifts ranging from sub-cm-1 to â³25 cm-1 serve as a molecular ruler of the degree of local crystallinity and disorder. Spatio-spectral-structural correlations reveal a previously invisible degree of highly variable local disorder in molecular coupling as the possible missing link between nanoscale morphology and associated electronic, photonic, and other functional properties of molecular materials.
Assuntos
Microscopia , VibraçãoRESUMO
Tip-enhanced nano-spectroscopy, such as tip-enhanced photoluminescence (TEPL) and tip-enhanced Raman spectroscopy (TERS), generally suffers from inconsistent signal enhancement and difficulty in polarization-resolved measurement. To address this problem, we present adaptive tip-enhanced nano-spectroscopy optimizing the nano-optical vector-field at the tip apex. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS. Employing a sequence feedback algorithm, we achieve ~4.4 × 104-fold TEPL enhancement of a WSe2 monolayer which is >2× larger than the normal TEPL intensity without wavefront shaping. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue molecules and the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced nano-spectroscopy thus provides for a systematic approach towards computational nanoscopy making optical nano-imaging more robust and widely deployable.
RESUMO
Order, disorder, and domains affect many of the functional properties in self-assembled monolayers (SAMs). However, carrier transport, wettability, and chemical reactivity are often associated with collective effects, where conventional imaging techniques have limited sensitivity to the underlying intermolecular coupling. Here we demonstrate vibrational excitons as a molecular ruler of intermolecular wave function delocalization and nanodomain size in SAMs. In the model system of a 4-nitrothiophenol (4-NTP) SAM on gold, we resolve coupling-induced peak shifts of the nitro symmetric stretch mode with full spatio-spectral infrared scattering scanning near-field optical microscopy. From modeling of the underlying 2D Hamiltonian, we infer domain sizes and their distribution ranging from 3 to 12 nm across a field of view on the micrometer scale. This approach of vibrational exciton nanoimaging is generally applicable to study structural phases and domains in SAMs and other molecular interfaces.