RESUMO
Gold nanoparticles (Au-NPs) have been used for a long time to target cancer cells. Different modalities have been suggested to utilize Au-NPs in cancer patients. We construct both normal and cancer cell membranes to simulate the Au-NP entry to understand better how it can penetrate the cancer cell membrane. We use molecular dynamics simulation (MDS) on both normal and cancer cell membrane models for 150 ns. At the same time, we prepared the Au-NP of spherical shape (16 nm radius) capped with citrate using MDS for 100 ns. Finally, we added the Au-NP close to the membranes and moved it using 1000 kJ mol-1 nm-1 force constant during the 7.7 ns MDS run. We analyzed the membranes in the presence and absence of the Au-NP and compared normal and cancer membranes. The results show that normal cell membranes have higher stability than cancer membranes. Additionally, Au-NP forms pore in the membranes that facilitate water and ions entry during the movement inside the lipid bilayer region. These pores are responsible for the enhanced response of Au-NP-loaded chemotherapeutic agents in cancer treatment.
Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Ouro , Membrana Celular , Simulação de Dinâmica MolecularRESUMO
Both gallic and citrate are well-established antioxidants that show promise as new selective anti-cancer drugs. Gold nanoparticles (AuNPs) as well can be developed as flexible and nontoxic nano-carriers for anti-cancer drugs. This article evaluating the efficiency and biocompatibility of gallic acid and citrate capping gold nanoparticles to be used as anti-cancer drug. The biosafety and therapeutic efficiency of prepared nano-formulations were tested on Hela and normal BHK cell line. Gold nanospheres coated with citrate and gallate were synthesized via wet chemical reduction method. The prepared nano-formulations, citrate and gallate coated gold nanospheres (Cit-AuNPs and Ga-AuNPs), were characterized with respect to their morphology, FTIR spectra, and physical properties. In addition, to assess their cytotoxicity, cell cycle arrest and flow cytometry to measure biological response were performed. Cit-Au NPs and Ga-Au NPs were shown to significantly reduce the viability of Hela cancer cells. Both G0/G cell cycle arrest and comet assay results showed that genotoxic effect was induced in Hela cells by Cit-Au NPs and Ga-Au NPs. The results of this study showed that Cit-Au NPs and Ga-AuNPs inhibit the growth of metastatic cervical cancer cells, which could have therapeutic implications.