Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 20(6): 3100-3114, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148327

RESUMO

Solid tumors are often poorly vascularized, which impairs oxygen supply and drug delivery to the cells. This often leads to genetic and translational adaptations that promote tumor progression, invasion, metastasis, and resistance to conventional chemo-/radiotherapy and immunotherapy. A hypoxia-directed nanosensitizer formulation of a hypoxia-activated prodrug (HAP) was developed by encapsulating iodoazomycin arabinofuranoside (IAZA), a 2-nitroimidazole nucleoside-based HAP, in a functionally modified carbohydrate-based nanogel, facilitating delivery and accrual selectively in the hypoxic head and neck and prostate cancer cells. Although IAZA has been reported as a clinically validated hypoxia diagnostic agent, recent studies have pointed to its promising hypoxia-selective anti-tumor properties, which make IAZA an excellent candidate for further exploration as a multimodal theranostic of hypoxic tumors. The nanogels are composed of a galactose-based shell with an inner core of thermoresponsive (di(ethylene glycol) methyl ethyl methacrylate) (DEGMA). Optimization of the nanogels led to high IAZA-loading capacity (≅80-88%) and a slow time-controlled release over 50 h. Furthermore, nanoIAZA (encapsulated IAZA) displayed superior in vitro hypoxia-selective cytotoxicity and radiosensitization in comparison to free IAZA in the head and neck (FaDu) and prostate (PC3) cancer cell lines. The acute systemic toxicity profile of the nanogel (NG1) was studied in immunocompromised mice, indicating no signs of toxicity. Additionally, growth inhibition of subcutaneous FaDu xenograft tumors was observed with nanoIAZA, demonstrating that this nanoformulation offers a significant improvement in tumor regression and overall survival compared to the control.


Assuntos
Hipóxia , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Nanogéis , Hipóxia Celular , Neoplasias da Próstata/tratamento farmacológico , Galactose , Linhagem Celular Tumoral
2.
Antioxidants (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829948

RESUMO

Cellular adaptations to hypoxia promote resistance to ionizing radiation (IR). This presents a challenge for treatment of head and neck cancer (HNC) that relies heavily on radiotherapy. Standard radiosensitizers often fail to reach diffusion-restricted hypoxic cells, whereas nitroimidazoles (NIs) [such as iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA)] can preferentially accumulate in hypoxic tumours. Here, we explored if the hypoxia-selective uptake of IAZA and FAZA could be harnessed to make HNC cells (FaDu) susceptible to radiation therapy. Cellular response to treatment was assessed through clonogenic survival assays and by monitoring DNA damage (immunofluorescence staining of DNA damage markers, γ-H2AX and p-53BP1, and by alkaline comet assay). The effects of reoxygenation were studied using the following assays: estimation of nucleoside incorporation to assess DNA synthesis rates, immunofluorescent imaging of chromatin-associated replication protein A as a marker of replication stress, and quantification of reactive oxygen species (ROS). Both IAZA and FAZA sensitized hypoxic HNC cells to IR, albeit the former is a better radiosensitizer. Radiosensitization by these compounds was restricted only to hypoxic cells, with no visible effects under normoxia. IAZA and FAZA impaired cellular adaptation to reoxygenation; high levels of ROS, reduced DNA synthesis capacity, and signs of replication stress were observed in reoxygenated cells. Overall, our data highlight the therapeutic potentials of IAZA and FAZA for targeting hypoxic HNC cells and provide rationale for future preclinical studies.

3.
Redox Biol ; 52: 102300, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430547

RESUMO

Solid tumours are often poorly oxygenated, which confers resistance to standard treatment modalities. Targeting hypoxic tumours requires compounds, such as nitroimidazoles (NIs), equipped with the ability to reach and become activated within diffusion limited tumour niches. NIs become selectively entrapped in hypoxic cells through bioreductive activation, and have shown promise as hypoxia directed therapeutics. However, little is known about their mechanism of action, hindering the broader clinical usage of NIs. Iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA) are clinically validated 2-NI hypoxic radiotracers with excellent tumour uptake properties. Hypoxic cancer cells have also shown preferential susceptibility to IAZA and FAZA treatment, making them ideal candidates for an in-depth study in a therapeutic setting. Using a head and neck cancer model, we show that hypoxic cells display higher sensitivity to IAZA and FAZA, where the drugs alter cell morphology, compromise DNA replication, slow down cell cycle progression and induce replication stress, ultimately leading to cytostasis. Effects of IAZA and FAZA on target cellular macromolecules (DNA, proteins and glutathione) were characterized to uncover potential mechanism(s) of action. Covalent binding of these NIs was only observed to cellular proteins, but not to DNA, under hypoxia. While protein levels remained unaffected, catalytic activities of NI target proteins, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase (GST) were significantly curtailed in response to drug treatment under hypoxia. Intraperitoneal administration of IAZA was well-tolerated in mice and produced early (but transient) growth inhibition of subcutaneous mouse tumours.


Assuntos
Neoplasias de Cabeça e Pescoço , Nitroimidazóis , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Hipóxia/tratamento farmacológico , Camundongos , Nitroimidazóis/farmacologia
5.
Redox Biol ; 41: 101905, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640700

RESUMO

Tumour hypoxia negatively impacts therapy outcomes and continues to be a major unsolved clinical problem. Nitroimidazoles are hypoxia selective compounds that become entrapped in hypoxic cells by forming drug-protein adducts. They are widely used as hypoxia diagnostics and have also shown promise as hypoxia-directed therapeutics. However, little is known about the protein targets of nitroimidazoles and the resulting effects of their modification on cancer cells. Here, we report the synthesis and applications of azidoazomycin arabinofuranoside (N3-AZA), a novel click-chemistry compatible 2-nitroimidazole, designed to facilitate (a) the LC-MS/MS-based proteomic analysis of 2-nitroimidazole targeted proteins in FaDu head and neck cancer cells, and (b) rapid and efficient labelling of hypoxic cells and tissues. Bioinformatic analysis revealed that many of the 62 target proteins we identified participate in key canonical pathways including glycolysis and HIF1A signaling that play critical roles in the cellular response to hypoxia. Critical cellular proteins such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase P (GSTP1) appeared as top hits, and N3-AZA adduct formation significantly reduced their enzymatic activities only under hypoxia. Therefore, GAPDH, GSTP1 and other proteins reported here may represent candidate targets to further enhance the potential for nitroimidazole-based cancer therapeutics.


Assuntos
Nitroimidazóis , Proteômica , Hipóxia Celular , Cromatografia Líquida , Citotoxinas , Humanos , Hipóxia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA