Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-8, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990847

RESUMO

Influenza is a contagious viral infection of the respiratory tract, affecting nearly 10% of the world's population, each year. The aim of this study was to extract and identify antiviral compounds against the influenza-A virus (H1N1) from different species of Egyptian marine algae. Three samples of marine macroalgae species were extracted and the antiviral activity of the extracts were tested on Madin Darby Canine Kidney cells. The bioactive compounds present in the most active fractions were identified using gas chromatography-mass spectrometry (GC-MS), then the binding potentials of the identified compounds were examined towards neuraminidase (NA) of the influenza-A virus using molecular docking. The methanolic extract of Sargassum aquifolium showed promising in-vitro antiviral activity with a selectivity index (SI) value of 101. The GC-MS analysis showed twelve compounds and the molecular docking analysis found that tetradecanoic acid showed the strongest binding affinities towards the NA enzyme.

2.
Mar Drugs ; 21(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37504935

RESUMO

Brown algae comprise up to 2000 species with wide dissemination in temperate zones. A comprehensive untargeted metabolic profiling guided by molecular networking of three uninvestigated Red-Sea-derived brown algae, namely Sirophysalis trinodis, Polycladia myrica, and Turbinaria triquetra, led to the identification of over 115 metabolites categorized as glycerolipids, fatty acids, sterol lipids, sphingolipids, and phospholipids. The three algae exhibited low-to-moderate antioxidant capacity using DPPH and ABTS assays. Preliminary in vitro antiproliferative studies showed that the algal extracts displayed high cytotoxic activity against a panel of cancer cell lines. The most potent activity was recorded against MCF-7 with IC50 values of 51.37 ± 1.19, 63.44 ± 1.13, and 59.70 ± 1.22 µg/mL for S. trinodis, P. myrica, and T. triquetra, respectively. The cytotoxicity of the algae was selective to MCF-7 without showing notable effects on the proliferation of normal human WISH cells. Morphological studies revealed that the algae caused cell shrinkage, increased cellular debris, triggered detachment, cell rounding, and cytoplasmic condensation in MCF-7 cancer cells. Mechanistic investigations using flow cytometry, qPCR, and Western blot showed that the algae induced apoptosis, initiated cell cycle arrest in the sub-G0/G1 phase, and inhibited the proliferation of cancer cells via increasing mRNA and protein expression of p53, while reducing the expression of PI3K, Akt, and mTOR.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cromatografia Líquida , Oceano Índico , Proliferação de Células , Espectrometria de Massas em Tandem , Serina-Treonina Quinases TOR/metabolismo , Células MCF-7 , Apoptose , Linhagem Celular Tumoral
3.
Mar Drugs ; 20(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547932

RESUMO

With respect to the potential natural resources in the marine environment, marine macroalgae or seaweeds are recognized to have health impacts. Two marine algae that are found in the Red Sea, Codium tomentosum (Green algae) and Actinotrichia fragilis (Red algae), were collected. Antibacterial and antioxidant activities of aqueous extracts of these algae were evaluated in vitro. Polyphenols from the extracts were determined using HPLC. Fillet fish was fortified with these algal extracts in an attempt to improve its nutritional value, and sensory evaluation was performed. The antibacterial effect of C. tomentosum extract was found to be superior to that of A. fragilis extract. Total phenolic contents of C. tomentosum and A. fragilis aqueous extract were 32.28 ± 1.63 mg/g and 19.96 ± 1.28 mg/g, respectively, while total flavonoid contents were 4.54 ± 1.48 mg/g and 3.86 ± 1.02 mg/g, respectively. Extract of C. tomentosum demonstrates the highest antioxidant activity, with an IC50 value of 75.32 ± 0.07 µg/mL. The IC50 of L-ascorbic acid as a positive control was 22.71 ± 0.03 µg/mL. The IC50 values for inhibiting proliferation on normal PBMC cells were 33.7 ± 1.02 µg/mL and 51.0 ± 1.14 µg/mL for C. tomentosum and A. fragilis, respectively. The results indicated that both algal aqueous extracts were safe, with low toxicity to normal cells. Interestingly, fillet fish fortified with C. tomentosum extract demonstrated the greatest overall acceptance score. These findings highlight the potential of these seaweed species for cultivation as a sustainable and safe source of therapeutic compounds for treating human and fish diseases, as well as effective food supplements and preservatives instead of chemical ones after performing in vivo assays.


Assuntos
Clorófitas , Rodófitas , Alga Marinha , Animais , Humanos , Antioxidantes/farmacologia , Leucócitos Mononucleares , Clorófitas/química , Alga Marinha/química , Rodófitas/química , Aditivos Alimentares , Suplementos Nutricionais , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA