Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845383

RESUMO

In this study, a CuInS2/Cu2O/TiO2 nanotube (TNT) heterojunction-based hybrid material is reported for the selective detection of cholesterol and ibuprofen. Anodic TNTs were co-decorated with Cu2O and CuInS2 quantum dots (QDs) using a modified chemical bath deposition (CBD) method. QDs help trigger the chemical oxidation of cholesterol by cathodically generating hydroxyl radicals (˙OH). The small size of QDs can be used to tune the energy levels of electrode materials to the effective redox potential of redox species, resulting in highly improved sensing characteristics. Under optimal conditions, CuInS2/Cu2O/TNTs show the highest sensitivity (∼12 530 µA mM-1 cm-2, i.e. up to 11-fold increase compared to pristine TNTs) for cholesterol detection with a low detection limit (0.013 µM) and a fast response time (1.3 s). The proposed biosensor was successfully employed for the detection of cholesterol in real blood samples. In addition, fast (4 s) and reliable detection of ibuprofen (with a sensitivity of ∼1293 µA mM-1 cm-2) as a water contaminant was achieved using CuInS2/Cu2O/TNTs. The long-term stability and favourable reproducibility of CuInS2/Cu2O/TNTs illustrate a unique concept for the rational design of a stable and high-performance multi-purpose electrochemical sensor.

2.
RSC Adv ; 12(27): 17228-17236, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35755593

RESUMO

Mesoporous silicon (mSi) obtained by the magnesiothermic reduction of mesoporous silica was used to deposit polyaniline (PANI) in its pores, the composite was tested for its charge storage application for high performance supercapacitor electrodes. The mesoporous silica as confirmed by Small Angle X-ray Scattering (SAXS) has a Brunauer-Emmett-Teller (BET) surface area of 724 m2g-1 and mean pore size of 5 nm. After magnesiothermic reduction to mSi, the BET surface area is reduced to 348 m2g-1 but the mesoporousity is retained with a mean pore size of 10 nm. The BET surface area of mesoporous silicon is among the highest for porous silicon prepared/reduced from silica. In situ polymerization of PANI inside the pores of mSi was achieved by controlling the polymerization conditions. As a supercapacitor electrode, the mSi-PANI composite exhibits better charge storage performance as compared to pure PANI and mesoporous silica-PANI composite electrodes. Enhanced electrochemical performance of the mSi-PANI composite is attributed to the high surface mesoporous morphology of mSi with a network structure containing abundant mesopores enwrapped by an electrochemically permeable polyaniline matrix.

3.
ACS Appl Mater Interfaces ; 13(3): 3653-3668, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439005

RESUMO

A thin layer of gold nanoparticles (Au NPs) sputtered on cadmium sulfide quantum dots (CdS QDs) decorated anodic titanium dioxide nanotubes (TNTs) (Au/CdS QDs/TNTs) was fabricated and explored for the nonenzymatic detection of cholesterol and hydrogen peroxide (H2O2). Morphological studies of the sensor revealed the formation of uniform nanotubes decorated with a homogeneously dispersed CdS QDs and Au NPs layer. The electrochemical measurements showed an enhanced electrocatalytic performance with a fast electron transfer (∼2 s) between the redox centers of each analyte and electrode surface. The hybrid nanostructure (Au/CdS QDs/TNTs) electrode exhibited about a 6-fold increase in sensitivity for both cholesterol (10,790 µA mM-1 cm-2) and H2O2 (78,833 µA mM-1 cm-2) in analyses compared to the pristine samples. The hybrid electrode utilized different operational potentials for both analytes, which may lead to a voltage-switchable dual-analyte biosensor with a higher selectivity. The biosensor also demonstrated a good reproducibility, thermal stability, and increased shelf life. In addition, the clinical significance of the biosensor was tested for cholesterol and H2O2 in real blood samples, which showed maximum relative standard deviations of 1.8 and 2.3%, respectively. These results indicate that a Au/CdS QDs/TNTs-based hybrid nanostructure is a promising choice for an enzyme-free biosensor due to its suitable band gap alignment and higher electrocatalytic activities.


Assuntos
Técnicas Biossensoriais/métodos , Colesterol/sangue , Ouro/química , Peróxido de Hidrogênio/sangue , Nanopartículas Metálicas/química , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Nanotubos/química , Pontos Quânticos/química , Sulfetos/química , Titânio/química
4.
PeerJ ; 8: e9594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874777

RESUMO

BACKGROUND: Pink bollworm (Pectinophora gossypiella) is a destructive insect pest of cotton crops in China and globally, which is actively predated on by Orius strigicollis. Studies on the fitness or survival of O. strigicollis fed on P. gossypiella at different temperatures have not been reported. The fitness of O. strigicollis may be well explained using two-sex life table parameters. Thus, the present study provides important insights for the effective biocontrol of P. gossypiella. METHODOLOGY: Considering the importance of fitness parameters and biocontrol, the present study explores the feeding potential and age-stage, two-sex life table traits of O. strigicollis on P. gossypiella eggs at different temperatures (24, 28 and 32 °C) in the laboratory. RESULTS: The intrinsic rate of increase (r) was higher at 28 °C (0.14 d-1) than at 24 °C (0.0052 d-1) and 32 °C (0.12 d-1). Similarly, the net reproductive rate (R 0) was higher at 28 °C (17.63 offspring) than at 24 °C (1.13 offspring) and 32 °C (10.23 offspring). This concluded that the maximum feeding potential and growth capacity of O. strigicollis could be attained at 28 °C when fed on P. gossypiella eggs. O. strigicollis adults preferred to feed on P. gossypiella eggs compared with first instar larvae. Based on these results, the present study suggests that O. strigicollis represents a promising biological control agent against P. gossypiella eggs in cotton fields.

5.
Insects ; 11(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882812

RESUMO

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a major pest of several economically important crops with worldwide distribution. Use of insecticides is the principal strategy for its management, which has subsequently led to insecticide resistance and control failures. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) at larval and adult stages was evaluated in this study, using S. litura eggs as the prey at various temperatures varying between 15 and 35 °C. Based on logistic model findings, linear parameters of various predatory stages of H. axyridis at various temperatures were significantly negative, which indicate a type II functional response. The theoretical maximum number (T/Th) of eggs consumed increased with increasing temperature for all predatory stages. According to the random predator equation, the coefficients of attack rate increased and that of handling time decreased as the temperature increased. The 4th instar and adult stages were superior candidates for biocontrol of the target prey, typically at higher temperatures. The maximum attack rate (0.546 ± 0.058 h) and lowest handling time (0.189 ± 0.004 h-1) were exhibited by the females at 30 and 35 °C, respectively, whereas these parameters were inferior for early instars. These findings clearly depict that the 4th instar and adult predators are efficient egg consumers and can serve as potential suppressors of S. litura field populations. The limitations of the predictions formulated by functional response trials are also discussed.

6.
Insects ; 11(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752271

RESUMO

Except of pest control, insecticides have shown adverse effects on natural enemies as well. Thus, risk assessment of pesticides for biological control agents is critical for effective use in integrated pest management (IPM) schemes. In the present study, the lethal and sublethal effects of chlorpyrifos, a commonly used insecticide that may negatively affect biological control agents, were evaluated on a non-target predator, the Asian ladybeetle Harmonia axyridis. Previous studies have reported on lethal concentrations, but the effects of sublethal concentrations remain unclear. Lethal and sublethal concentrations of chlorpyrifos were applied to third instar larvae of H. axyridis, and different growth and developmental parameters were measured. Treatment with LC10 (4.62 mg a.i. L-1) significantly shortened the developmental period of third instar larvae, whereas it significantly prolonged those of fourth instar larvae and pupa. Treatment with LC30 (9.59 mg a.i. L-1) significantly increased the larval and pupal developmental period compared with that of the control, whereas feeding potential, female fecundity, and adult longevity significantly decreased after LC10 and LC30 treatment. The pre-oviposition period significantly increased compared with that of the control. Population growth parameters, the finite (λ) and intrinsic rate of increase (r) and the net reproductive rate (R0), decreased following exposure to sublethal concentrations of chlorpyrifos. According to the results, the use of chlorpyrifos in IPM schemes requires further research because even sublethal concentrations of this insecticide were harmful to H. axyridis population growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA