Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2243, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278855

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous potential for basic research and translational application. However, these cells structurally and functionally resemble fetal cardiomyocytes, which is a major limitation of these cells. Microgravity can significantly alter cell behavior and function. Here we investigated the effect of simulated microgravity on hiPSC-CM maturation. Following culture under simulated microgravity in a random positioning machine for 7 days, 3D hiPSC-CMs had increased mitochondrial content as detected by a mitochondrial protein and mitochondrial DNA to nuclear DNA ratio. The cells also had increased mitochondrial membrane potential. Consistently, simulated microgravity increased mitochondrial respiration in 3D hiPSC-CMs, as indicated by higher levels of maximal respiration and ATP content, suggesting improved metabolic maturation in simulated microgravity cultures compared with cultures under normal gravity. Cells from simulated microgravity cultures also had improved Ca2+ transient parameters, a functional characteristic of more mature cardiomyocytes. In addition, these cells had improved structural properties associated with more mature cardiomyocytes, including increased sarcomere length, z-disc length, nuclear diameter, and nuclear eccentricity. These findings indicate that microgravity enhances the maturation of hiPSC-CMs at the structural, metabolic, and functional levels.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ausência de Peso , Humanos , Miócitos Cardíacos/metabolismo , Células Cultivadas , Sarcômeros , Diferenciação Celular
2.
J Am Heart Assoc ; 10(24): e022247, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34873922

RESUMO

Background Anticancer therapies have significantly improved patient outcomes; however, cardiac side effects from cancer therapies remain a significant challenge. Cardiotoxicity following treatment with proteasome inhibitors such as carfilzomib is known in clinical settings, but the underlying mechanisms have not been fully elucidated. Methods and Results Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a cell model for drug-induced cytotoxicity in combination with traction force microscopy, functional assessments, high-throughput imaging, and comprehensive omic analyses, we examined the molecular mechanisms involved in structural and functional alterations induced by carfilzomib in hiPSC-CMs. Following the treatment of hiPSC-CMs with carfilzomib at 0.01 to 10 µmol/L, we observed a concentration-dependent increase in carfilzomib-induced toxicity and corresponding morphological, structural, and functional changes. Carfilzomib treatment reduced mitochondrial membrane potential, ATP production, and mitochondrial oxidative respiration and increased mitochondrial oxidative stress. In addition, carfilzomib treatment affected contractility of hiPSC-CMs in 3-dimensional microtissues. At a single cell level, carfilzomib treatment impaired Ca2+ transients and reduced integrin-mediated traction forces as detected by piconewton tension sensors. Transcriptomic and proteomic analyses revealed that carfilzomib treatment downregulated the expression of genes involved in extracellular matrices, integrin complex, and cardiac contraction, and upregulated stress responsive proteins including heat shock proteins. Conclusions Carfilzomib treatment causes deleterious changes in cellular and functional characteristics of hiPSC-CMs. Insights into these changes could be gained from the changes in the expression of genes and proteins identified from our omic analyses.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Oligopeptídeos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/efeitos adversos
3.
Front Cell Dev Biol ; 9: 712627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497806

RESUMO

Astrocyte reactivity is associated with poor repair capacity after injury to the brain, where chemical and physical changes occur in the damaged zone. Astrocyte surface proteins, such as integrins, are upregulated, and the release of pro-inflammatory molecules and extracellular matrix (ECM) proteins upon damage generate a stiffer matrix. Integrins play an important role in triggering a reactive phenotype in astrocytes, and we have reported that α V ß3 Integrin binds to the Thy-1 (CD90) neuronal glycoprotein, increasing astrocyte contractility and motility. Alternatively, α V ß3 Integrin senses mechanical forces generated by the increased ECM stiffness. Until now, the association between the α V ß3 Integrin mechanoreceptor response in astrocytes and changes in their reactive phenotype is unclear. To study the response to combined chemical and mechanical stress, astrocytes were stimulated with Thy-1-Protein A-coated magnetic beads and exposed to a magnetic field to generate mechanical tension. We evaluated the effect of such stimulation on cell adhesion and contraction. We also assessed traction forces and their effect on cell morphology, and integrin surface expression. Mechanical stress accelerated the response of astrocytes to Thy-1 engagement of integrin receptors, resulting in cell adhesion and contraction. Astrocyte contraction then exerted traction forces onto the ECM, inducing faster cell contractility and higher traction forces than Thy-1 alone. Therefore, cell-extrinsic chemical and mechanical signals regulate in an outside-in manner, astrocyte reactivity by inducing integrin upregulation, ligation, and signaling events that promote cell contraction. These changes in turn generate cell-intrinsic signals that increase traction forces exerted onto the ECM (inside-out). This study reveals α V ß3 Integrin mechanoreceptor as a novel target to regulate the harmful effects of reactive astrocytes in neuronal healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA