Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Curr Opin Biotechnol ; 87: 103115, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547588

RESUMO

With the continuous increment in global population growth, compounded by post-pandemic food security challenges due to labor shortages, effects of climate change, political conflicts, limited land for agriculture, and carbon emissions control, addressing food production in a sustainable manner for future generations is critical. Microorganisms are potential alternative food sources that can help close the gap in food production. For the development of more efficient and yield-enhancing products, it is necessary to have a better understanding on the underlying regulatory molecular pathways of microbial growth. Nevertheless, as microbes are regulated at multiomics scales, current research focusing on single omics (genomics, proteomics, or metabolomics) independently is inadequate for optimizing growth and product output. Here, we discuss digital twin (DT) approaches that integrate systems biology and artificial intelligence in analyzing multiomics datasets to yield a microbial replica model for in silico testing before production. DT models can thus provide a holistic understanding of microbial growth, metabolite biosynthesis mechanisms, as well as identifying crucial production bottlenecks. Our argument, therefore, is to support the development of novel DT models that can potentially revolutionize microorganism-based alternative food production efficiency.

2.
Biosystems ; 236: 105122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199520

RESUMO

The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein-metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)-d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.


Assuntos
Algoritmos , Medicina de Precisão , Humanos , Biomarcadores/análise , Proteoma , Metaboloma
3.
Metabolites ; 13(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37887372

RESUMO

Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is the third leading cause of mortality globally. Patients with HCC have a poor prognosis due to the fact that the emergence of symptoms typically occurs at a late stage of the disease. In addition, conventional biomarkers perform suboptimally when identifying HCC in its early stages, heightening the need for the identification of new and more effective biomarkers. Using metabolomics and lipidomics approaches, this study aims to identify serum biomarkers for identification of HCC in patients with liver cirrhosis (LC). Serum samples from 20 HCC cases and 20 patients with LC were analyzed using ultra-high-performance liquid chromatography-Q Exactive mass spectrometry (UHPLC-Q-Exactive-MS). Metabolites and lipids that are significantly altered between HCC cases and patients with LC were identified. These include organic acids, amino acids, TCA cycle intermediates, fatty acids, bile acids, glycerophospholipids, sphingolipids, and glycerolipids. The most significant variability was observed in the concentrations of bile acids, fatty acids, and glycerophospholipids. In the context of HCC cases, there was a notable increase in the levels of phosphatidylethanolamine and triglycerides, but the levels of fatty acids and phosphatidylcholine exhibited a substantial decrease. In addition, it was observed that all of the identified metabolites exhibited a superior area under the receiver operating characteristic (ROC) curve in comparison to alpha-fetoprotein (AFP). The pathway analysis of these metabolites revealed fatty acid, lipid, and energy metabolism as the most impacted pathways. Putative biomarkers identified in this study will be validated in future studies via targeted quantification.

4.
Heliyon ; 9(7): e18012, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483710

RESUMO

The bones of two fish species, Oreochromis niloticus and Katsuwonus pelamis, were chosen in this research for evaluating their photocatalytic efficacy under solar radiation. The fish bones were isolated and conditioned before analyzing crystallographic parameters. The samples were characterized by using different instrumental techniques such as Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Energy Dispersive X-ray (EDX), Field Emission Scanning Electronic Microscopy (FESEM), and optical bandgap. From the XRD data, various types of crystallographic information such as crystallite size, microstrain, lattice parameters, dislocation density, degree of crystallinity, crystallinity index, Hydroxylapatite (HAp), the volume fraction of ß-TCP, ß-Tricalcium phosphate (ß-TCP) percentage, and specific surface area were evaluated. Different model equations such as the Sahadat-Scherrer model, Linear Straight-line model, Monshi-Scherrer's method, and Williamson-Hall plot were employed to justify the nano-crystallite size. The photocatalytic efficacy of the two types of samples was explored by changing the catalyst concentration, dye concentration, interaction time, pH of the solution, etc. under solar irradiation.

6.
Front Immunol ; 14: 1309997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173725

RESUMO

Background: Understanding the characteristics of the humoral immune responses following COVID-19 vaccinations is crucial for refining vaccination strategies and predicting immune responses to emerging SARS-CoV-2 variants. Methods: A longitudinal analysis of SARS-CoV-2 spike receptor binding domain (RBD) specific IgG antibody responses, encompassing IgG subclasses IgG1, IgG2, IgG3, and IgG4 was performed. Participants received four mRNA vaccine doses (group 1; n=10) or two ChAdOx1 nCoV-19 and two mRNA booster doses (group 2; n=19) in Bangladesh over two years. Results: Findings demonstrate robust IgG responses after primary Covishield or mRNA doses; declining to baseline within six months. First mRNA booster restored and surpassed primary IgG responses but waned after six months. Surprisingly, a second mRNA booster did not increase IgG levels further. Comprehensive IgG subclass analysis showed primary Covishield/mRNA vaccination generated predominantly IgG1 responses with limited IgG2/IgG3, Remarkably, IgG4 responses exhibited a distinct pattern. IgG4 remained undetectable initially but increased extensively six months after the second mRNA dose, eventually replacing IgG1 after the 3rd/4th mRNA doses. Conversely, initial Covishield recipients lack IgG4, surged post-second mRNA booster. Notably, mRNA-vaccinated individuals displayed earlier, robust IgG4 levels post first mRNA booster versus Covishield counterparts. IgG1 to IgG4 ratios decreased with increasing doses, most pronounced with four mRNA doses. This study highlights IgG response kinetics, influenced by vaccine type and doses, impacting immunological tolerance and IgG4 induction, shaping future vaccination strategies. Conclusions: This study highlights the dynamics of IgG responses dependent on vaccine type and number of doses, leading to immunological tolerance and IgG4 induction, and shaping future vaccination strategies.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , ChAdOx1 nCoV-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , RNA Mensageiro
7.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36558918

RESUMO

Natural biometabolites of plants have been reported to be useful in chronic diseases including diabetes and associated complications. This research is aimed to investigate how the biometabolites of Lasia spinosa methanol stem (MEXLS) extract ameliorative diabetes and diabetes-related complications. MEXLS was examined for in vitro antioxidant and in vivo antidiabetic effects in a streptozotocin-induced diabetes model, and its chemical profiling was done by gas chromatography-mass spectrometry analysis. The results were verified by histopathological examination and in silico ligand-receptor interaction of characterized natural biometabolites with antidiabetic receptor proteins AMPK (PDB ID: 4CFH); PPARγ (PDB ID: 3G9E); and mammalian α-amylase center (PDB ID: 1PPI). The MEXLS was found to show a remarkable α-amylase inhibition (47.45%), strong antioxidant action, and significant (p < 0.05) decrease in blood glucose level, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein (LDL), urea, uric acid, creatinine, total cholesterol, triglyceride (TG), liver glycogen, creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase in serum insulin, glucose tolerance, and high-density lipoprotein (HDL). Rat's pancreas and kidney tissues were found to be partially recovered in histopathological analyses. Methyl α-d-galactopyranoside displayed the highest binding affinity with AMPK (docking score, −5.764), PPARγ (docking score, −5.218), and 1PPI (docking score, −5.615) receptors. Data suggest that the MEXLS may be an exciting source to potentiate antidiabetic activities affirming a cell-line study.

8.
J Am Chem Soc ; 144(50): 23053-23060, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475663

RESUMO

Hypoxia is a hallmark of many diseases, including cancer, arthritis, heart and kidney diseases, and diabetes, and it is often associated with disease aggressiveness and poor prognosis. Consequently, there is a critical need for imaging hypoxia in a noninvasive and direct way to diagnose, stage, and monitor the treatment and development of new therapies for these diseases. Eu-containing contrast agents for magnetic resonance imaging have demonstrated potential for in vivo imaging of hypoxia via changes in metal oxidation state from +2 to +3, but rapid oxidation in blood limits EuII-containing complexes to studies compatible with direct injection to sites. Here, we report a new EuII-containing complex that persists in oxygenated environments and is capable of persisting in blood long enough for imaging by magnetic resonance imaging. We describe the screening of a library of ligands that led to the discovery of the complex as well as a pH-dependent mechanism that hinders oxidation to enable usefulness in vivo. These studies of the first divalent lanthanide complex that persists in oxygenated solutions open the door to the use of EuII-based contrast agents for imaging hypoxia in a wide range of diseases.


Assuntos
Európio , Elementos da Série dos Lantanídeos , Ligantes , Meios de Contraste , Imageamento por Ressonância Magnética/métodos
9.
J Pharm Biomed Anal ; 220: 114976, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35939877

RESUMO

Agastache rugosa (fisch. & C.A. Mey.) Kuntze (A. rugosa) is used in traditional medicine in Korea since it has variety of medicinal activities, such as antioxidant, anti-inflammatory, anti-photoaging. Acacetin, tilianin, and rosmarinic acid are the active components of A. rugosa but their metabolites have not yet been fully identified. The purpose of this study was to identify the metabolites of A. rugosa after oral administration in Sprague-Dawley rats. For this study, active components (acacetin, tilianin, rosmarinic acid) and A. rugosa extract were dissolved in 0.5% carboxymethyl cellulose sodium solution respectively and treated by oral gavage at a dose of 50 mg/kg (for single compounds) and 200 mg/kg (for A. rugosa extract). For metabolite identification, plasma, urine, and fecal samples were collected after oral administration and analyzed using liquid chromatography coupled with Orbitrap mass spectrometry (UPLC-Orbitrap-MS) for data acquisition and metabolite identification. Metabolite identification was performed by considering the mass difference of the metabolites from the parent compounds and using their exact m/z and MS/MS fragments. The main biotransformation of the major components of A. rugosa was hydrolysis to acacetin, followed by demethylation, methylation, and conjugation. That of rosmarinic acid is methylated and conjugated. There were differences in metabolism between the treatment of single active components and extract; some sulfate-conjugated metabolites or metabolic intermediates were only detected in the treatment of single active components. The reason for this is thought to be the low content of the active components in the extract, which react competitively with the components present in the extract in the metabolic process. This study provides valuable evidence for a comprehensive understanding of the metabolism of A. rugosa.


Assuntos
Agastache , Agastache/química , Animais , Antioxidantes , Carboximetilcelulose Sódica , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos , Depsídeos , Extratos Vegetais , Ratos , Ratos Sprague-Dawley , Sódio , Sulfatos , Espectrometria de Massas em Tandem/métodos , Ácido Rosmarínico
10.
Sci Rep ; 12(1): 13307, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922639

RESUMO

We address the challenge, due to sparse observational records, of investigating long-term changes in the storm surge climate globally. We use two centennial and three satellite-era daily storm surge time series from the Global Storm Surge Reconstructions (GSSR) database and assess trends in the magnitude and frequency of extreme storm surge events at 320 tide gauges across the globe from 1930, 1950, and 1980 to present. Before calculating trends, we perform change point analysis to identify and remove data where inhomogeneities in atmospheric reanalysis products could lead to spurious trends in the storm surge data. Even after removing unreliable data, the database still extends existing storm surge records by several decades for most of the tide gauges. Storm surges derived from the centennial 20CR and ERA-20C atmospheric reanalyses show consistently significant positive trends along the southern North Sea and the Kattegat Bay regions during the periods from 1930 and 1950 onwards and negative trends since 1980 period. When comparing all five storm surge reconstructions and observations for the overlapping 1980-2010 period we find overall good agreement, but distinct differences along some coastlines, such as the Bay of Biscay and Australia. We also assess changes in the frequency of extreme surges and find that the number of annual exceedances above the 95th percentile has increased since 1930 and 1950 in several regions such as Western Europe, Kattegat Bay, and the US East Coast.


Assuntos
Clima , Tempo (Meteorologia) , Austrália , Europa (Continente) , Mar do Norte
11.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684876

RESUMO

Due to its significant global impact, both domestic and international efforts are underway to cure the infection and stop the COVID-19 virus from spreading further. In resource-limited environments, overwhelmed healthcare institutions and surveillance systems are struggling to cope with this epidemic, necessitating a specific strategic response. In this study, we looked into the COVID-19 situation and to establish trust, accountability, and transparency, we employed blockchain's immutable and tamper-proof properties. We offered a smart contract (SC)-based solution (Block-HPCT) that has been successfully tested to preserve a digital health passport (DHP) for vaccine recipients; also, for contact tracing (CT) we employed proof of location concept, which aids in a swift and credible response directly from the appropriate healthcare authorities. To connect on-chain and off-chain data, trusted and registered oracles were integrated and to provide a double layer of security along with symmetric key encryption; both Interplanetary File System (IPFS) and Hyperledger Fabric were merged as storage center. We also provided a full description of the suggested solution's system design, implementation, experiment results, and evaluation (privacy and cost analysis). As per the findings, the suggested approach performed satisfactorily across all significant assessment criteria, implying that it can lead the way for practical implementations and also can be used for similar types of situations where contact tracing of infectious can be crucial.


Assuntos
Blockchain , COVID-19 , Doenças Transmissíveis , COVID-19/prevenção & controle , Busca de Comunicante/métodos , Humanos , Privacidade
12.
J Cell Mol Med ; 26(12): 3343-3363, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502486

RESUMO

Since ancient times, plants have been used as green bioresources to ensure a healthier life by recovering from different diseases. Kattosh (Lasia spinosa L. Thwaites) is a local plant with various traditional uses, especially for arthritis, constipation and coughs. This research investigated the effect of Kattosh stem extract (LSES) on streptozotocin-induced damage to the pancreas, kidney, and liver using in vitro, in vivo and in silico methods. In vitro phytochemical, antioxidative and anti-inflammatory effects of LSES were accomplished by established methods followed by antidiabetic actions in in vivo randomized controlled intervention in STZ-induced animal models for four weeks. In an in silico study, LSES phytocompounds interacted with antidiabetic receptors of peroxisome proliferator-activated receptor-gamma (PPAR, PDB ID: 3G9E), AMP-activated protein kinase (AMPK, PDB ID: 4CFH) and α-amylase enzyme (PDB ID: 1PPI) to verify the in vivo results. In addition, LSES showed promising in vitro antioxidative and anti-inflammatory effects. In contrast, it showed a decrease in weekly blood glucose level, normalized lipid profile, ameliorated liver and cardiac markers, managed serum AST and ALT levels, and increased glucose tolerance ability in the animal model study. Restoration of pancreatic and kidney damage was reflected by improving histopathological images. In ligand-receptor interaction, ethyl α-d-glucopyranoside of Kattosh showed the highest affinity for the α-amylase enzyme, PPAR, and AMPK receptors. Results demonstrate that the affinity of Kattosh phytocompounds potentially attenuates pancreatic and kidney lesions and could be approached as an alternative antidiabetic source with further clarification.


Assuntos
PPAR gama , Extratos Vegetais , Proteínas Quinases Ativadas por AMP , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Rim/patologia , PPAR gama/metabolismo , Pâncreas/patologia , Extratos Vegetais/farmacologia , Estreptozocina/toxicidade , alfa-Amilases/farmacologia
13.
Physiol Mol Biol Plants ; 28(2): 455-469, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400880

RESUMO

Bacterial blight, one of the oldest and most severe diseases of rice poses a major threat to global rice production and food security. Thereafter, sustainable management of this disease has given paramount importance globally. In the current study, we explored 792 landraces to evaluate their disease reaction status against three highly virulent strains (BXo69, BXo87 and BXo93) of Xanthomonas oryzae pv. oryzae (Xoo). Subsequently, we intended to identify the possible candidate resistant (R) genes responsible for the resistant reaction using six STS (Sequence Tagged Site) markers correspond to Xa4, xa5, Xa7, xa13, Xa21 and Xa23 genes and finally, we evaluated morphological variability of the potential bacterial blight resistant germplasm using quantitative traits. Based on pathogenicity test, a single germplasm was found as highly resistant while, 33 germplasm were resistant and 40 were moderately resistant. Further molecular study on these 74 germplasm divulged that 41 germplasm carried Xa4 gene, 15 carried xa5 gene, 62 carried Xa7 gene, 33 carried xa13 gene, and 19 carried Xa23 gene. Only a single germplasm found to carry Xa21 gene. Interestingly, we found a wide range of gene combinations ranged from 2 to 4 genes among the germplasm, where 10 germplasm carried 4 genes, 15 germplasm carried 3 genes and 38 germplasm carried 2 genes of various combinations. Notably, G3 genotype (Acc. No. 4216; highly resistant) having Xa4, Xa7, xa13, Xa21 and G43 genotype (Acc.No. 1523; resistant) having Xa4, xa5, xa13 and Xa23 gene combination being the most effective against all the Xoo strains. Nonetheless, UPGMA dendrogram and heatmap analysis based on quantitative traits identified two clusters viz. cluster-III and cluster-VIII with multiple desired traits. The outcome of this study would enrich and diversify the rice gene pool and would be useful for the development of durable bacterial blight resistant varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01139-x.

14.
Front Cell Dev Biol ; 10: 761080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155422

RESUMO

The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.

15.
Biomed Pharmacother ; 143: 112215, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649346

RESUMO

Orchids are basically ornamental, and biological functions are seldom evaluated. This research investigated the effects of Acampe ochracea methanol extract (AOME) in ameliorating the paracetamol (PCM) induced liver injury in Wistar albino rats, evaluating its phytochemical status through UPLC-qTOF-MS analysis. With molecular docking and network pharmacology, virtual screening verified the inevitable interactions between the UPLC-qTOF-MS-characterized compounds and hepatoprotective drug receptors. The AOME has explicit a dose-dependent decrease of liver enzymes acid phosphatase (ACP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), total bilirubin, as well as an increase of serum total protein and antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH) with a virtual normalization (p < 0.05-p < 0.001) and the values were almost equivalent to the reference drug silymarin. After pretreatment with AOME, PCM-induced malondialdehyde (MDA) levels were considerably decreased (p < 0.001). Histopathological examinations corroborated the functional and biochemical findings. The AOME upregulated the genes involved in antioxidative (CAT, SOD, ß-actin, PON1, and PFK1) and hepatoprotective mechanisms in PCM intoxicated rats. An array of 103 compounds has been identified from AOME through UPLC-qTOF-MS analysis. The detected compounds were substantially related to the targets of several liver proteins and antioxidative enzymes, according to an in silico study. Virtual prediction by SwissADME and admetSAR showed that AOME has drug-like, non-toxic, and potential pharmacological activities in hepatic damage. Furthermore, VEGFA, CYP19A1, MAPK14, ESR1, and PPARG genes interact with target compounds impacting the significant biological actions to recover PCM-induced liver damage.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Orchidaceae , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetaminofen , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacocinética , Aromatase/genética , Aromatase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Masculino , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Orchidaceae/química , Estresse Oxidativo/genética , PPAR gama/genética , PPAR gama/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacocinética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Mapas de Interação de Proteínas , Ratos Wistar , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Oxid Med Cell Longev ; 2021: 9711176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367469

RESUMO

The purpose of this study was to look into the effects of green coconut mesocarp juice extract (CMJE) on diabetes-related problems in streptozotocin- (STZ-) induced type 2 diabetes, as well as the antioxidative functions of its natural compounds in regulating the associated genes and biochemical markers. CMJE's antioxidative properties were evaluated by the standard antioxidant assays of 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide radical, nitric oxide, and ferrous ions along with the total phenolic and flavonoids content. The α-amylase inhibitory effect was measured by an established method. The antidiabetic effect of CMJE was assayed by fructose-fed STZ-induced diabetic models in albino rats. The obtained results were verified by bioinformatics-based network pharmacological tools: STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba bioinformatics tools. The results showed that GC-MS-characterized compounds from CMJE displayed a very promising antioxidative potential. In an animal model study, CMJE significantly (P < 0.05) decreased blood glucose, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, uric acid, and lipid levels and increased glucose tolerance as well as glucose homeostasis (HOMA-IR and HOMA-b scores). The animal's body weights and relative organ weights were found to be partially restored. Tissue architectures of the pancreas and the kidney were remarkably improved by low doses of CMJE. Compound-protein interactions showed that thymine, catechol, and 5-hydroxymethylfurfural of CMJE interacted with 84 target proteins. Of the top 15 proteins found by Cytoscape 3.6.1, 8, CAT and OGG1 (downregulated) and CASP3, COMT, CYP1B1, DPYD, NQO1, and PTGS1 (upregulated), were dysregulated in diabetes-related kidney disease. The data demonstrate the highly prospective use of CMJE in the regulation of tubulointerstitial tissues of patients with diabetic nephropathy.


Assuntos
Antioxidantes/farmacologia , Cocos/química , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/análise , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , alfa-Amilases/antagonistas & inibidores
17.
Toxics ; 9(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34437506

RESUMO

Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid ß (Aß) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth's crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.

18.
Biomed Chromatogr ; 35(11): e5190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34101862

RESUMO

Mammalian or mechanistic target of rapamycin (mTOR) drives its fundamental cellular functions through two distinct catalytic subunits, mTORC1 and mTORC2, and is frequently dysregulated in most cancers. To treat cancers, developed mTOR inhibitors have been classified into first and second generations based on their ability to inhibit single (first-generation) and dual (second-generation) mTOR subunits. However, the underlying metabolic differences due to the effects of first- and second-generation mTOR inhibitors have not been clearly evaluated. In this study, rapamycin (sirolimus) and AZD8055 and PP242 were selected as first- and second-generation mTOR inhibitors, respectively, to evaluate the metabolic differences due to these two generations of mTOR inhibitors after a single oral dose using untargeted metabolomics and lipidomics approaches. The metabolic differences at each time point were compared using multivariate analysis. The multivariate and data analyses showed that metabolic disparity was more prominent within 8 h after drug administration and a broad class of metabolites were affected by the administration of both generations of mTOR inhibitors. Among the metabolite classes, changes in the pattern of fatty acids and glycerophospholipids were opposite, specifically at 4 and 8 h between the two generations of mTOR inhibitors. We speculate that the inhibition of the mTORC2 subunit by the second-generation mTOR inhibitor may have resulted in a distinct metabolic pattern between the first- and second-generation inhibitors. Finally, the findings of this study could assist in a more detailed understanding of the key metabolic differences caused by first- and second-generation mTOR inhibitors.


Assuntos
Lipidômica/métodos , Inibidores de MTOR/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Ratos , Ratos Sprague-Dawley
19.
Indian J Tuberc ; 68(3): 416-419, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34099213

RESUMO

Myocardial tuberculosis is an exceptionally rare form of extra-pulmonary TB. Few cases were reported world-wide. Here a young snake charmer who had skin tuberculosis 5 yrs back admitted into National institute of diseases of Chest and hospital (NIDCH), Dhaka with the complaints of cough, palpitation and breathlessness for 2 months. He had right axillary firm matted lymphadenopathy, left sided large pleural effusion, left ventricular and septal hypertrophy with band and mass inside the ventricle (evident on CT scan of heart and echocardiography). His ESR was 95 mm in1st hr, Mantaux test was 15mm, Pleural fluid was exudative lymphocyte predominant with adenosin deaminase (ADA) 68.6 U/L. Fine needle aspirates from right axillary LNs showed Mycobacterium tuberculosis on GeneXpert for MTB/RIF testing and caseous granuloma on cytopathological study. Whole Body F18 FDG PET-CT revealed numerous low FDG avid size significant lymph nodes in right side of neck, mediastinum and right axilla with cardiomegaly with focal FDG avid within the left ventricular cavity likely to be prominent papillary muscle. MRI of heart or Myocardial biopsy for histology was not done due to their cost and invasiveness and also for that there was sufficient evidence of having tuberculosis in lymph node, pleura nas myocardium. This patient was treated with anti tubercular medications (3HRZE2S/5HRE) with prednisolone for six months. After treatment, myocardial lesions, pleural effusion and lymphadenopathy were found resolved. Thus a case of fatal and serious tuberculosis was explored and managed successfully.


Assuntos
Antituberculosos/administração & dosagem , Cardiopatias , Mycobacterium tuberculosis/isolamento & purificação , Prednisolona/administração & dosagem , Tuberculose , Adolescente , Anti-Inflamatórios/administração & dosagem , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/etiologia , Eletrocardiografia/métodos , Cardiopatias/diagnóstico , Cardiopatias/microbiologia , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Masculino , Derrame Pleural/diagnóstico , Derrame Pleural/etiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/fisiopatologia , Tuberculose/terapia , Tuberculose dos Linfonodos/diagnóstico , Tuberculose dos Linfonodos/etiologia
20.
Heliyon ; 7(3): e06458, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33768173

RESUMO

In this present study conducted with the LFGD (Low-Frequency Glow Discharge) (Ar + O2) plasma treated maize seeds, to inspect the effect on seed surface modifications, seed germination, growth, development, productivity and nutritional compositions of maize plants. This study reported that LFGD (Ar + O2) plasma treated maize seeds have a potential effect to change its smooth seed surfaces and, it becomes rougher. It also enhances the seed germination rate up to (15.88%), which might help to increase the shoot length (33.42%), root length (10.67%), stem diameter (13.37%), total chlorophyll content (46.93%), total soluble protein (52.48%), total soluble phenol (21.68%) and sugar (1.62%) concentrations in respect controls of our experimental plants. For this reason, the acceptable treatment duration for maize seeds were 30sec, 60sec, 90sec and 120sec. After treatment, the plants exhibited a significant increase in CAT, SOD, APX and GR activities in the leaves and roots, and also significantly changes in H2O2 (208.33 ± 5.87µ molg-1 FW) in the leaves and (61.13 ± 1.72µ molg-1 FW) in the roots, NO was (369.24 ± 213.19µ molg-1FW) and (1094.23 ± 135.44µ molg-1FW) in the leaves and roots. LFGD plasma treatment also contributed to enhancement of productivity (1.27%), nutritional (moisture, ash, fat, and crude fiber) compositions, and iron and zinc micro-nutrition concentrations of maize. From this research, LFGD (Ar + O2) plasma treatment showed a potential impact on the maize cultivation system, which is very effective tools and both in nationally and internationally alter the conventional cultivation system of maize. Because it promotes seed surface modification, improved germination rate, shoot length, root length, chlorophyll content, some of the growths related enzymatic activity, nutrient composition, iron, and zinc micro-nutrients and the productivity of maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA