Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(5): 48, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555331

RESUMO

Carcinomas often utilize epithelial-mesenchymal transition (EMT) programs for cancer progression and metastasis. Numerous studies report SNAIL-induced miR200/Zeb feedback circuit as crucial in regulating EMT by placing cancer cells in at least three phenotypic states, viz. epithelial (E), hybrid (h-E/M), mesenchymal (M), along the E-M phenotypic spectrum. However, a coherent molecular-level understanding of how such a tiny circuit controls carcinoma cell entrance into and residence in various states is lacking. Here, we use molecular binding data and mathematical modeling to report that the miR200/Zeb circuit can essentially utilize combinatorial cooperativity to control E-M phenotypic plasticity. We identify minimal combinatorial cooperativities that give rise to E, h-E/M, and M phenotypes. We show that disrupting a specific number of miR200 binding sites on Zeb as well as Zeb binding sites on miR200 can have phenotypic consequences-the circuit can dynamically switch between two (E, M) and three (E, h-E/M, M) phenotypes. Further, we report that in both SNAIL-induced and SNAIL knock-out miR200/Zeb circuits, cooperative transcriptional feedback on Zeb as well as Zeb translation inhibition due to miR200 are essential for the occurrence of intermediate h-E/M phenotype. Finally, we demonstrate that SNAIL can be dispensable for EMT, and in the absence of SNAIL, the transcriptional feedback can control cell state transition from E to h-E/M, to M state. Our results thus highlight molecular-level regulation of EMT in miR200/Zeb circuit and we expect these findings to be crucial to future efforts aiming to prevent EMT-facilitated dissemination of carcinomas.


Assuntos
Carcinoma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Retroalimentação , Modelos Biológicos , Conceitos Matemáticos , Transição Epitelial-Mesenquimal/genética
2.
PLoS Comput Biol ; 18(11): e1010687, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346808

RESUMO

Epithelial to Mesenchymal Transition (EMT) and its reverse-Mesenchymal to Epithelial Transition (MET) are hallmarks of metastasis. Cancer cells use this reversible cellular programming to switch among Epithelial (E), Mesenchymal (M), and hybrid Epithelial/Mesenchymal (hybrid E/M) state(s) and seed tumors at distant sites. Hybrid E/M cells are often more aggressive and metastatic than the "pure" E and M cells. Thus, identifying mechanisms to inhibit hybrid E/M cells can be promising in curtailing metastasis. While multiple gene regulatory networks (GRNs) based mathematical models for EMT/MET have been developed recently, identifying topological signatures enriching hybrid E/M phenotypes remains to be done. Here, we investigate the dynamics of 13 different GRNs and report an interesting association between "hybridness" and the number of negative/positive feedback loops across the networks. While networks having more negative feedback loops favor hybrid phenotype(s), networks having more positive feedback loops (PFLs) or many HiLoops-specific combinations of PFLs, support terminal (E and M) phenotypes. We also establish a connection between "hybridness" and network-frustration by showing that hybrid phenotypes likely result from non-reinforcing interactions among network nodes (genes) and therefore tend to be more frustrated (less stable). Our analysis, thus, identifies network topology-based signatures that can give rise to, as well as prevent, the emergence of hybrid E/M phenotype in GRNs underlying EMP. Our results can have implications in terms of targeting specific interactions in GRNs as a potent way to restrict switching to the hybrid E/M phenotype(s) to curtail metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Neoplasias/genética , Benchmarking , Redes Reguladoras de Genes , Fenótipo
3.
Sci Rep ; 10(1): 16523, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020580

RESUMO

Glutamate dehydrogenase (GDH) is a key enzyme interlinking carbon and nitrogen metabolism. Recent discoveries of the GDH specific role in breast cancer, hyperinsulinism/hyperammonemia (HI/HA) syndrome, and neurodegenerative diseases have reinvigorated interest on GDH regulation, which remains poorly understood despite extensive and long standing studies. Notwithstanding the growing evidence of the complexity of allosteric network behind GDH regulation, identifications of allosteric factors and associated mechanisms are paramount to deepen our understanding of the complex dynamics that regulate GDH enzymatic activity. Combining structural analyses of cryo-electron microscopy data with molecular dynamic simulations, here we show that the cofactor NADH is a key player in the GDH regulation process. Our structural analysis indicates that, binding to the regulatory sites in proximity of the antenna region, NADH acts as a positive allosteric modulator by enhancing both the affinity of the inhibitor GTP binding and inhibition of GDH catalytic activity. We further show that the binding of GTP to the NADH-bound GDH activates a triangular allosteric network, interlinking the inhibitor with regulatory and catalytic sites. This allostery produces a local conformational rearrangement that triggers an anticlockwise rotational motion of interlinked alpha-helices with specific tilted helical extension. This structural transition is a fundamental switch in the GDH enzymatic activity. It introduces a torsional stress, and the associated rotational shift in the Rossmann fold closes the catalytic cleft with consequent inhibition of the deamination process. In silico mutagenesis examinations further underpin the molecular basis of HI/HA dominant mutations and consequent over-activity of GDH through alteration of this allosteric communication network. These results shed new light on GDH regulation and may lay new foundation in the design of allosteric agents.


Assuntos
Regulação Alostérica/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/ultraestrutura , Difosfato de Adenosina/metabolismo , Biofísica/métodos , Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Desaminação , Guanosina Trifosfato/metabolismo , Hiperamonemia/genética , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Mutação/efeitos dos fármacos , NAD/metabolismo , Conformação Proteica
4.
Biophys J ; 118(4): 898-908, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31699333

RESUMO

Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1-a transporter cum sensor-provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.


Assuntos
Arabidopsis , Nitratos , Proteínas de Transporte de Ânions , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Plantas/metabolismo
5.
iScience ; 2: 41-50, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30428377

RESUMO

Plant adaptation in variable soil nitrate concentrations involves sophisticated signaling and transport systems that modulate a variety of physiological and developmental responses. However, we know very little about their molecular mechanisms. It has recently been reported that many of these responses are regulated by a transceptor NRT1.1, a transporter cum receptor of nitrate signaling. NRT1.1 displays dual-affinity modes of nitrate binding and establishes phosphorylated/non-phosphorylated states at the amino acid residue threonine 101 in response to fluctuating nitrate concentrations. Here we report that intrinsic structural asymmetries between the protomers of the homodimer NRT1.1 provide a functional basis for having dual-affinity modes of nitrate binding and play a pivotal role for the phosphorylation switch. Nitrate-triggered local conformational changes facilitate allosteric communications between the nitrate binding and the phosphorylation site in one protomer, but such communications are impeded in the other. Structural analysis therefore suggests the functional relevance of NRT1.1 interprotomer asymmetries.

6.
R Soc Open Sci ; 4(1): 160768, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28280580

RESUMO

Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity.

7.
Integr Biol (Camb) ; 8(11): 1126-1132, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27747338

RESUMO

Impaired glutamate dehydrogenase (GDH) sensitivity to its inhibitors causes excessive insulin secretion by pancreatic beta-cells and defective ammonia metabolism in the liver. These symptoms are commonly associated with hyperinsulinism/hyperammonemia syndrome (HI/HA), which causes recurrent hypoglycaemia in early infancy. Hepatic localization of GDH amination and deamination activities linked with the urea cycle is known to be involved in ammonia metabolism and detoxification. Although deamination activities of hepatic GDH in the periportal zones of liver lobules and its connection to the urea cycle have been exhaustively investigated, physiological roles of GDH amination activity observed at pericentral zones have often been overlooked. Using kinetic modelling approaches, here we report a new role for hepatic GDH amination kinetics in maintaining ammonia homeostasis under an excess intrahepatocyte input of ammonium. We have shown that α-ketoglutarate substrate inhibition kinetics of GDH, which include both random and obligatory ordered association/dissociation reactions, robustly control the ratio between glutamate and ammonium under a wide range of intracellular substrate variation. Dysregulation of this activity under pericentral nitrogen insufficiency contributes to the breaking down of ammonia homeostasis and thereby can significantly affect HI/HA syndrome.


Assuntos
Amônia/metabolismo , Compostos de Amônio/metabolismo , Glutamato Desidrogenase/metabolismo , Hepatócitos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos , Aminação/fisiologia , Aminas/metabolismo , Animais , Simulação por Computador , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Humanos , Cinética , Especificidade por Substrato , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA