Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591204

RESUMO

In this study, different planar inductor topologies were studied to evaluate their characteristic parameters' variation range upon approaching Fe- and Cu-based shield plates. The use of such materials can differently alter the electrical properties of planar inductors such as the inductance, resonant frequency, resistance, and quality factor, which could be useful in multiple devices, particularly in inductive sensing and radio-frequency (or RF) applications. To reach an optimal design, five different square topologies, including spiral, tapered, non-spiral, meander, and fractal, were built on a printed circuit board (PCB) and assessed experimentally. At the working frequency of 1 MHz, the results showed a decrease in the inductance value when approaching a Cu-based plate and an increase with Fe-based plates. The higher variation range was noticeable for double-layer topologies, which was about 60% with the Cu-based plate. Beyond an intrinsic deflection frequency, the inductance value began to decrease when approaching the ferromagnetic plate because of the ferromagnetic resonance (FMR). It has been shown that the FMR frequency depends on the inductor topology and is larger for the double-layer spiral one. The Q-factor was decreasing for all topologies but was much faster when using ferromagnetic plates because of the FMR, which intensely increases the track resistance. The resonant frequency was increasing for all double-layer topologies and decreasing for single-layer ones, which was mainly due to the percentage change in the stray capacitance compared to the inductance variation. The concept of varying inductors by metal shielding plates has great potential in a wide range of nondestructive sensing and RF applications.

2.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055286

RESUMO

Precise prediction of mechanical behavior of thin films at the nanoscale requires techniques that consider size effects and fabrication-related issues. Here, we propose a test methodology to estimate the Young's modulus of nanometer-thick films using micromachined bilayer cantilevers. The bilayer cantilevers which comprise a well-known reference layer and a tested film deflect due to the relief of the residual stresses generated during the fabrication process. The mechanical relationship between the measured residual stresses and the corresponding deflections was used to characterize the tested film. Residual stresses and deflections were related using analytical and finite element models that consider intrinsic stress gradients and the use of adherence layers. The proposed methodology was applied to low pressure chemical vapor deposited silicon nitride tested films with thicknesses ranging from 46 nm to 288 nm. The estimated Young's modulus values varying between 213.9 GPa and 288.3 GPa were consistent with nanoindentation and alternative residual stress-driven techniques. In addition, the dependence of the results on the thickness and the intrinsic stress gradient of the materials was confirmed. The proposed methodology is simple and can be used to characterize diverse materials deposited under different fabrication conditions.

3.
Sensors (Basel) ; 21(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669589

RESUMO

Since the first graphene gas sensor has been reported, functionalized graphene gas sensors have already attracted a lot of research interest due to their potential for high sensitivity, great selectivity, and fast detection of various gases. In this paper, we summarize the recent development and progression of functionalized graphene sensors for ammonia (NH3) detection at room temperature. We review graphene gas sensors functionalized by different materials, including metallic nanoparticles, metal oxides, organic molecules, and conducting polymers. The various sensing mechanism of functionalized graphene gas sensors are explained and compared. Meanwhile, some existing challenges that may hinder the sensor mass production are discussed and several related solutions are proposed. Possible opportunities and perspective applications of the graphene NH3 sensors are also presented.

4.
Biosensors (Basel) ; 11(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670061

RESUMO

Paper substrates are promising for development of cost-effective and efficient point-of-care biosensors, essential for public healthcare and environmental diagnostics in emergency situations. Most paper-based biosensors rely on the natural capillarity of paper to perform qualitative or semi-quantitative colorimetric detections. To achieve quantification and better sensitivity, technologies combining paper-based substrates and electrical detection are being developed. In this work, we demonstrate the potential of electrical measurements by means of a simple, parallel-plate electrode setup towards the detection of whole-cell bacteria captured in nitrocellulose (NC) membranes. Unlike current electrical sensors, which are mostly integrated, this plug and play system has reusable electrodes and enables simple and fast bacterial detection through impedance measurements. The characterized NC membrane was subjected to (i) a biofunctionalization, (ii) different saline solutions modelling real water samples, and (iii) bacterial suspensions of different concentrations. Bacterial detection was achieved in low conductivity buffers through both resistive and capacitive changes in the sensed medium. To capture Bacillus thuringiensis, the model microorganism used in this work, the endolysin cell-wall binding domain (CBD) of Deep-Blue, a bacteriophage targeting this bacterium, was integrated into the membranes as a recognition bio-interface. This experimental proof-of-concept illustrates the electrical detection of 107 colony-forming units (CFU) mL-1 bacteria in low-salinity buffers within 5 min, using a very simple setup. This offers perspectives for affordable pathogen sensors that can easily be reconfigured for different bacteria. Water quality testing is a particularly interesting application since it requires frequent testing, especially in emergency situations.


Assuntos
Celulose/química , Monitoramento Ambiental/métodos , Microbiologia da Água , Poluição da Água/análise , Técnicas Biossensoriais , Impedância Elétrica , Eletrodos , Água
5.
Sci Rep ; 9(1): 13426, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530850

RESUMO

The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100-200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2-3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at room-temperature correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.

6.
Sci Rep ; 9(1): 3653, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842583

RESUMO

Graphene decorated by palladium (Pd) nanoparticles has been investigated for hydrogen sensor applications. The density of Pd nanoparticles is critical for the sensor performance. We develop a new chemical method to deposit high-density, small-size and uniformly-distributed Pd nanoparticles on graphene. With this method, Pd precursors are connected to the graphene by π-π bonds without introducing additional defects in the hexagonal carbon lattice. Our method is simple, cheap, and compatible with complementary metal-oxide semiconductor (CMOS) technology. This method is used to fabricate hydrogen sensors on 3-inch silicon wafers. The sensors show high performance at room temperature. Particularly, the sensors present a shorter recovery time under light illumination. The sensing mechanism is explained and discussed. The proposed deposition method facilitates mass fabrication of the graphene sensors and allows integration with CMOS circuits for practical applications.

7.
Nanoscale ; 10(46): 21898-21909, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30431636

RESUMO

Producing ultra-flat crack-free single-layer high-quality graphene over large areas has remained the key challenge to fully exploit graphene's potential into next-generation technological applications. In this regard, we show that epitaxial Cu(111) film represents the most promising catalyst for the chemical vapor deposition (CVD) of graphene with superior planarity and physical integrity. We first compare the most widely used Cu catalysts (foils, polycrystalline films and epitaxial films) in order to benchmark the roughness of the Cu surface which serves as a template for graphene growth. We then discuss the correlation between the formation of cracks and wrinkles in as-grown graphene and the surface morphology of these various Cu catalysts. In particular, Cu grain boundary grooves, inherently present in polycrystalline substrates, are found to contribute to the formation of cracks. Finally, we focused on tuning the CVD protocol in order to successfully grow highly crystalline graphene made of millimeter-size domains on every type of catalyst while mitigating Cu surface roughening. Putting into context the challenges and opportunities associated with the most widely used Cu catalysts provides valuable guidelines for high-throughput manufacturing of graphene suitable for emerging industrial applications.

8.
Sensors (Basel) ; 18(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347743

RESUMO

New mobile devices need microphones with a small size, low noise level, reduced cost and high stability respect to variations of temperature and humidity. These characteristics can be obtained using Microelectromechanical Systems (MEMS) microphones, which are substituting for conventional electret condenser microphones (ECM). We present the design and modeling of a capacitive dual-backplate MEMS microphone with a novel circular diaphragm (600 µm diameter and 2.25 µm thickness) supported by fifteen polysilicon springs (2.25 µm thickness). These springs increase the effective area (86.85% of the total area), the linearity and sensitivity of the diaphragm. This design is based on the SUMMiT V fabrication process from Sandia National Laboratories. A lumped element model is obtained to predict the electrical and mechanical behavior of the microphone as a function of the diaphragm dimensions. In addition, models of the finite element method (FEM) are implemented to estimate the resonance frequencies, deflections, and stresses of the diaphragm. The results of the analytical models agree well with those of the FEM models. Applying a bias voltage of 3 V, the designed microphone has a bandwidth from 31 Hz to 27 kHz with 3 dB sensitivity variation, a sensitivity of 34.4 mV/Pa, a pull-in voltage of 6.17 V and a signal to noise ratio of 62 dBA. The results of the proposed microphone performance are suitable for mobile device applications.

9.
Sensors (Basel) ; 18(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789474

RESUMO

Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs).


Assuntos
Sistemas Microeletromecânicos/instrumentação , Neoplasias/sangue , Células Neoplásicas Circulantes/patologia , Humanos , Eletricidade Estática
10.
Sensors (Basel) ; 18(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494541

RESUMO

In this article, we describe a NO2 sensor consisting of a coating based on lutetium bisphthalocyanine (LuPc2) in mesoporous silica. The sensor exploits the absorption spectrum change of this material which strongly and reversibly decreases in contact with NO2. NO2 is measured by following the amplitude change in the reflected spectrum of the coating deposited on the tip of a silica fibre. As diffusion of NO2 in LuPc2 is slow, the response time could be slow. To reduce it, the active molecules are dispersed in a mesoporous silica matrix deposited by a sol-gel process (Evaporation Induced Self Assembly) avoiding the formation of large crystals. Doing so, the response is fairly fast. As the recovery is slow at room temperature, the recovery time is reduced by exposure to UV light at 365 nm. This UV light is directly introduced in the fibre yielding a practical sensor sensitive to NO2 in the ppm range suitable for pollution monitoring.

11.
Sensors (Basel) ; 17(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338635

RESUMO

Today, significant attention has been brought to the development of sensitive, specific, cheap, and reliable sensors for real-time monitoring. Molecular imprinting technology is a versatile and promising technology for practical applications in many areas, particularly chemical sensors. Here, we present a chemical sensor for detecting formaldehyde, a toxic common indoor pollutant gas. Polypyrrole-based molecularly-imprinted polymer (PPy-based MIP) is employed as the sensing recognition layer and synthesized on a titanium dioxide nanotube array (TiO2-NTA) for increasing its surface-to-volume ratio, thereby improving the sensor performance. Our sensor selectively detects formaldehyde in the parts per million (ppm) range at room temperature. It also shows a long-term stability and small fluctuation to humidity variations. These are attributed to the thin fishnet-like structure of the PPy-based MIP on the highly-ordered and vertically-aligned TiO2-NTA.


Assuntos
Nanotubos , Formaldeído , Impressão Molecular , Polímeros , Titânio
12.
Nanotechnology ; 28(5): 055501, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28008891

RESUMO

Graphene has attracted much attention for sensing applications in recent years. Its largest surface-to-volume ratio makes graphene sensors able to potentially detect a single molecule and its extremely high carrier mobility ensures low electrical noise and energy consumption. However, pristine graphene is chemically inert and weakly adsorbs gas molecules, while defective and/or doped graphene has stronger adsorption ability (high sensitivity). The high sensitivity is related to the increased number of defects or traps in graphene where the gas molecules can be readily grafted, changing the sensor resistance. Nonetheless, similar resistance changes could be induced under exposure to different gases, resulting in a lack of selectivity. Functional groups differ drastically from defects or traps since the former selectively anchor specific molecules. Here, we comparatively investigate three functionalization routes and optimize a defect-free one (2,3,5,6,-Tetrafluorohydroquinone, TFQ molecules) for the fabrication of graphene gas sensors. We use TFQ organic molecules as chemical recognition links between graphene and formaldehyde, the most common indoor pollutant gas. The sensor demonstrates a high response and a good selectivity for formaldehyde compared with interfering organic vapours. Particularly, the sensor has a strong immunity to humidity. Our results highlight that defect-free functionalization based on organic molecules not only increases the sensor's response but also its selectivity, paving the way to the design of efficient graphene-based sensors.

13.
Sci Rep ; 6: 24301, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102827

RESUMO

Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices.

14.
Rev Sci Instrum ; 87(1): 015002, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827345

RESUMO

Accurate measurement of the mechanical properties of ultra-thin films with thicknesses typically below 100 nm is a challenging issue with an interest in many fields involving coating technologies, microelectronics, and MEMS. A bilayer curvature based method is developed for the simultaneous determination of the elastic mismatch strain and Young's modulus of ultra-thin films. The idea is to deposit the film or coating on very thin cantilevers in order to amplify the curvature compared to a traditional "Stoney" wafer curvature test, hence the terminology "micro-Stoney." The data reduction is based on the comparison of the curvatures obtained for different supporting layer thicknesses. The elastic mismatch strain and Young's modulus are obtained from curvature measurements of cantilevers before and after the film deposition. The data reduction scheme relies on both analytical and finite element calculations, depending on the magnitude of the curvature. The experimental validation has been performed on ultra-thin low pressure chemical vapor deposited silicon nitride films with thickness ranging between 54 and 133 nm deposited on silicon cantilevers. The technique is sensitive to the cantilever geometry, in particular, to the thickness ratio and width/thickness ratio. Therefore, the precision in the determination of the latter quantities determines the accuracy on the extracted elastic mismatch strain and elastic modulus. The method can be potentially applied to films as thin as a few nanometers.

15.
Sci Rep ; 5: 13523, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26311131

RESUMO

Based on micro-Raman spectroscopy (µRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, µRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

16.
Nanotechnology ; 25(11): 115201, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24561553

RESUMO

We have developed a simple and reliable method for the fabrication of sub-10 nm wide nanogaps. The self-formed nanogap is based on the stoichiometric solid-state reaction between metal and silicon atoms during the silicidation process. The nanogap width is determined by the metal layer thickness. Our proposed method can produce symmetric and asymmetric electrode nanogaps, as well as multiple nanogaps within one unique process step, for potential application to biological/chemical sensors and nanoelectronics, such as resistive switches, storage devices, and vacuum channel transistors. This method provides high throughput and it is suitable for large-scale production.

17.
Nat Commun ; 3: 1290, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23250420

RESUMO

Daily-life foldable items, such as popup tents, the curved origami sculptures exhibited in the Museum of Modern Art of New York, overstrained bicycle wheels, released bilayered microrings and strained cyclic macromolecules, are made of rings buckled or folded in tridimensional saddle shapes. Surprisingly, despite their popularity and their technological and artistic importance, the design of such rings remains essentially empirical. Here we study experimentally the tridimensional buckling of rings on folded paper rings, lithographically processed foldable microrings, human-size wood sculptures or closed arcs of Slinky springs. The general shape adopted by these rings can be described by a single continuous parameter, the overcurvature. An analytical model based on the minimization of the energy of overcurved rings reproduces quantitatively their shape and buckling behaviour. The model also provides guidelines on how to efficiently fold rings for the design of space-saving objects.

18.
Rev Sci Instrum ; 82(11): 116106, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22129022

RESUMO

Simple fabrication process and extraction procedure to determine the fracture strain of monocrystalline silicon are demonstrated. Nanowires/nanoribbons in silicon are fabricated and subjected to uniaxial tensile stress along the complete length of the beams. Large strains up to 5% are measured for nanowires presenting a cross section of 50 nm × 50 nm and a length of 2.5 µm. An increase in fracture strain for silicon nanowires (NWs) with the downscaling of their volume is observed, highlighting the reduction of the defects probability as volume is decreased.

19.
Microsc Microanal ; 17(6): 983-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22030303

RESUMO

Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.


Assuntos
Alumínio/análise , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanoestruturas/análise , Nanotecnologia/métodos , Tomografia Computadorizada por Raios X/métodos , Cristalização , Íons , Micromanipulação , Dióxido de Silício/química , Tomografia Computadorizada por Raios X/instrumentação
20.
Nano Lett ; 11(11): 4520-6, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21967002

RESUMO

We present a new fully self-aligned single-electron memory with a single pair of nano floating gates, made of different materials (Si and Ge). The energy barrier that prevents stored charge leakage is induced not only by quantum effects but also by the conduction-band offset that arises between Ge and Si. The dimensions and position of each floating gate are well-defined and controlled. The devices exhibit a long retention time and single-electron injection at room temperature.


Assuntos
Armazenamento e Recuperação da Informação , Nanotecnologia/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA