Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Neurosci ; 26(6): 1042-1053, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264158

RESUMO

Functional hyperemia, also known as neurovascular coupling, is a phenomenon that occurs when neural activity increases local cerebral blood flow. Because all biological activity produces metabolic waste, we here sought to investigate the relationship between functional hyperemia and waste clearance via the glymphatic system. The analysis showed that whisker stimulation increased both glymphatic influx and clearance in the mouse somatosensory cortex with a 1.6-fold increase in periarterial cerebrospinal fluid (CSF) influx velocity in the activated hemisphere. Particle tracking velocimetry revealed a direct coupling between arterial dilation/constriction and periarterial CSF flow velocity. Optogenetic manipulation of vascular smooth muscle cells enhanced glymphatic influx in the absence of neural activation. We propose that impedance pumping allows arterial pulsatility to drive CSF in the same direction as blood flow, and we present a simulation that supports this idea. Thus, functional hyperemia boosts not only the supply of metabolites but also the removal of metabolic waste.


Assuntos
Sistema Glinfático , Hiperemia , Acoplamento Neurovascular , Camundongos , Animais , Hiperemia/metabolismo , Sistema Glinfático/metabolismo , Hemodinâmica , Encéfalo/metabolismo
3.
Physiol Rev ; 102(2): 1025-1151, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949874

RESUMO

The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-ß, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.


Assuntos
Sistema Glinfático , Peptídeos beta-Amiloides/metabolismo , Transporte Biológico , Barreira Hematoencefálica , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Sistema Glinfático/metabolismo , Humanos
4.
Brain ; 145(2): 787-797, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581781

RESUMO

Cerebral oedema develops after anoxic brain injury. In two models of asphyxial and asystolic cardiac arrest without resuscitation, we found that oedema develops shortly after anoxia secondary to terminal depolarizations and the abnormal entry of CSF. Oedema severity correlated with the availability of CSF with the age-dependent increase in CSF volume worsening the severity of oedema. Oedema was identified primarily in brain regions bordering CSF compartments in mice and humans. The degree of ex vivo tissue swelling was predicted by an osmotic model suggesting that anoxic brain tissue possesses a high intrinsic osmotic potential. This osmotic process was temperature-dependent, proposing an additional mechanism for the beneficial effect of therapeutic hypothermia. These observations show that CSF is a primary source of oedema fluid in anoxic brain. This novel insight offers a mechanistic basis for the future development of alternative strategies to prevent cerebral oedema formation after cardiac arrest.


Assuntos
Edema Encefálico , Parada Cardíaca , Hipotermia Induzida , Hipóxia Encefálica , Animais , Encéfalo , Edema Encefálico/etiologia , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Humanos , Hipóxia Encefálica/complicações , Camundongos
5.
Lancet Neurol ; 17(11): 1016-1024, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30353860

RESUMO

BACKGROUND: The glymphatic (glial-lymphatic) pathway is a fluid-clearance pathway identified in the rodent brain in 2012. This pathway subserves the flow of CSF into the brain along arterial perivascular spaces and subsequently into the brain interstitium, facilitated by aquaporin 4 (AQP4) water channels. The pathway then directs flow towards the venous perivascular and perineuronal spaces, ultimately clearing solutes from the neuropil into meningeal and cervical lymphatic drainage vessels. In rodents, the glymphatic pathway is predominantly active during sleep, when the clearance of harmful metabolites such as amyloid ß (Aß) increases two-fold relative to the waking state. Glymphatic dysfunction, probably related to perturbed AQP4 expression, has been shown in animal models of traumatic brain injury, Alzheimer's disease, and stroke. The recent characterisations of the glymphatic and meningeal lymphatic systems in rodents and in humans call for revaluation of the anatomical routes for CSF-interstitial fluid flow and the physiological role that these pathways play in CNS health. RECENT DEVELOPMENTS: Several features of the glymphatic and meningeal lymphatic systems have been shown to be present in humans. MRI scans with intrathecally administered contrast agent show that CSF flows along pathways that closely resemble the glymphatic system outlined in rodents. Furthermore, PET studies have revealed that Aß accumulates in the healthy brain after a single night of sleep deprivation, suggesting that the human glymphatic pathway might also be primarily active during sleep. Other PET studies have shown that CSF clearance of Aß and tau tracers is reduced in patients with Alzheimer's disease compared with healthy controls. The observed reduction in CSF clearance was associated with increasing grey-matter concentrations of Aß in the human brain, consistent with findings in mice showing that decreased glymphatic function leads to Aß accumulation. Altered AQP4 expression is also evident in brain tissue from patients with Alzheimer's disease or normal pressure hydrocephalus; glymphatic MRI scans of patients with normal pressure hydrocephalus show reduced CSF tracer entry and clearance. WHERE NEXT?: Research is needed to confirm whether specific factors driving glymphatic flow in rodents also apply to humans. Longitudinal imaging studies evaluating human CSF dynamics will determine whether a causal link exists between reduced brain solute clearance and the development of neurodegenerative diseases. Assessment of glymphatic function after stroke or traumatic brain injury could identify whether this function correlates with neurological recovery. New insights into how behaviour and genetics modify glymphatic function, and how this function decompensates in disease, should lead to the development of new preventive and diagnostic tools and novel therapeutic targets.


Assuntos
Sistema Glinfático/fisiopatologia , Doenças do Sistema Nervoso/patologia , Sistema Glinfático/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA