Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369389

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder for which only symptomatic treatment with limited benefits is available. AS is caused by mutations affecting the maternally inherited ubiquitin protein ligase E3A (UBE3A) gene. Previous studies showed that the silenced paternal Ube3a gene can be activated by targeting the antisense Ube3a-ATS transcript. We investigated antisense oligonucleotide-induced (ASO-induced) Ube3a-ATS degradation and its ability to induce UBE3A reinstatement and rescue of AS phenotypes in an established Ube3a mouse model. We found that a single intracerebroventricular injection of ASOs at postnatal day 1 (P1) or P21 in AS mice resulted in potent and specific UBE3A reinstatement in the brain, with levels up to 74% of WT levels in the cortex and a full rescue of sensitivity to audiogenic seizures. AS mice treated with ASO at P1 also showed rescue of established AS phenotypes, such as open field and forced swim test behaviors, and significant improvement on the reversed rotarod. Hippocampal plasticity of treated AS mice was comparable to WT but not significantly different from PBS-treated AS mice. No rescue was observed for the marble burying and nest building phenotypes. Our findings highlight the promise of ASO-mediated reactivation of UBE3A as a disease-modifying treatment for AS.


Assuntos
Síndrome de Angelman , Oligonucleotídeos Antissenso/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Variação Biológica da População , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Inativação Gênica , Camundongos , Reparo Gênico Alvo-Dirigido/métodos , Resultado do Tratamento
2.
J Gen Virol ; 87(Pt 8): 2279-2289, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16847124

RESUMO

A retroviral vector-rescue system in which co-packaging of the two co-expressed vectors is required for transduction of one of the vectors has been established previously. By using this rescue system, two distinct packaging-cell populations have been generated. One cell population expressed retroviral RNA from co-localized transcription sites, resulting in local and overlapping accumulation of both RNA transcripts. In the other cell population, the two transcription cassettes were introduced separately, leading to distinct transcription sites of the two RNAs and no significant co-localization of the RNAs. Titre measurements from the two distinct cell populations showed large differences in rescue titre, which is an indirect measure of co-packaging efficiency. Thus, the cell populations with overlapping RNA accumulation gave rise to 15-80-fold-higher rescue titres than cell populations with non-overlapping RNA accumulation. These data show that the spatial position of proviral transcription sites affects the level of retroviral RNA co-packaging and suggest that there is already a linkage of RNAs for co-packaging at the transcription site. It is hypothesized that this linkage is due to RNA dimerization taking place at the transcription site.


Assuntos
Gammaretrovirus/fisiologia , RNA Viral/metabolismo , Transcrição Gênica , Montagem de Vírus , Animais , Linhagem Celular , Dimerização , Gammaretrovirus/genética , Hibridização In Situ , Camundongos , Células NIH 3T3 , Vírion/química , Vírion/genética
3.
Virology ; 318(1): 360-70, 2004 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-14972561

RESUMO

Retroviruses encapsidate two copies of full-length viral RNA molecules linked together as a dimeric genome. RNA stem loop structures harboring palindromic (or "kissing") loop sequences constitute important cis-elements for viral dimerization known as dimer initiation sites (DIS). In murine leukemia virus (MLV), a 10-mer and a 16-mer palindrome (DIS-1 and DIS-2, respectively) located in the viral leader region mediate dimerization in vitro and affect dimer stability of vector RNA in vivo. We have investigated the effect on viral replication of introducing deletions or nucleotide substitutions within these palindromes in a full-length MLV genome. Our results demonstrate that viruses modified at the dimer initiation site regions are viable and show wild-type levels of RNA encapsidation. One mutant lacking the DIS-1 palindrome was severely impaired and displayed an increased cellular ratio of spliced versus genomic RNA that most likely contributes to the inefficient replication. The implications for development of DIS-modified retrovirus-based vectors are discussed.


Assuntos
Elementos Facilitadores Genéticos , Deleção de Genes , Vírus da Leucemia Murina/metabolismo , Mutação Puntual , Replicação Viral , Regiões 5' não Traduzidas , Animais , Células 3T3 BALB , Sequência de Bases , Linhagem Celular , Dimerização , Vírus da Leucemia Murina/química , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/patogenicidade , Camundongos , Dados de Sequência Molecular , Splicing de RNA , RNA Líder para Processamento , Montagem de Vírus
4.
Nucleic Acids Res ; 32(1): 102-14, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14715920

RESUMO

Retroviral particles contain a dimeric RNA genome, which serves as template for the generation of double-stranded DNA by reverse transcription. Transfer between RNA strands during DNA synthesis is governed by both sequence similarity between templates and structural features of the dimeric RNA. A kissing hairpin, believed to facilitate intermolecular recognition and dimer formation, was previously found to be a preferred site for recombination. To investigate if hairpin loop-loop-complementarity is the primary determinant for this recombination preference, we have devised a novel 5' leader recombination assay based upon co-packaging of two wild-type or loop-modified murine leukemia virus vector RNAs. We found that insertion of an alternative palindromic loop in one of the two vectors disrupted site-directed template switching, whereas site-specificity was restored between vectors with complementary non-wild-type palindromes. By pairing vector RNAs that contained identical non-palindromic loop motifs and that were unlikely to interact by loop-loop kissing, we found no preference for recombination at the kissing hairpin site. Of vector pairs designed to interact through base pairing of non-palindromic loop motifs, we could in one case restore hairpin-directed template switching, in spite of the reduced sequence identity, whereas another pair failed to support hairpin- directed recombination. However, analyses of in vitro RNA dimerization of all studied vector combinations showed a good correlation between efficient dimer formation between loop-modified viral RNAs and in vivo cDNA transfer at the kissing hairpin. Our findings demonstrate that complementarity between wild-type or non-wild-type hairpin kissing loops is essential but not sufficient for site-specific 5' leader recombination and lend further support to the hypothesis that a specific 'kissing' loop-loop interaction is guided by complementary sequences and maintained within the mature dimeric RNA of retroviruses.


Assuntos
Pareamento de Bases , Vírus da Leucemia Murina/genética , RNA Viral/genética , Recombinação Genética/genética , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular , Dimerização , Vetores Genéticos/genética , Camundongos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Provírus/genética , Moldes Genéticos , Transfecção , Montagem de Vírus
5.
J Mol Biol ; 323(4): 613-28, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12419254

RESUMO

Retroviruses harbour a diploid genome of two plus-strand RNAs linked non-covalently at the dimer linkage structure. Co-packaging of two parental RNAs is a prerequisite for recombination in retroviruses, but formation of heterodimers has not been demonstrated directly in vivo. Here, we explore elements in Harvey sarcoma virus (HaSV) RNA involved in homodimerization and heterodimerization with RNA of Moloney (Mo) and Akv murine leukemia viruses (MLV). By an in vitro assay, we found that HaSV dimerization specificity could be modulated by mutations in a decanucleotide palindrome (Pal) probably folded into a kissing-loop. Autocomplementary and non-autocomplementary sequences introduced into the putative loop directed the specificity towards formation of homodimers and heterodimers, respectively. Two stem-loop (SL) structures, both exposing a GACG tetraloop, enhanced the formation of stable HaSV dimers.A similar decanucleotide palindrome has been implicated in homodimerization of MLVs. Heterodimers between HaSV RNA and Mo- or Akv MLV were unstable, but could be stabilized by introduction of two point mutations in the putative HaSV kissing-loop, creating exact complementarity with Mo/Akv MLV palindromes. Moreover, such changes increased the HaSV RNA affinity for the two MLV RNAs. Similar to HaSV RNA homodimers, formation of heterodimers with Mo- or Akv MLV RNAs was induced by the presence of GACG loops. On the basis of these results, we propose that palindromic sequences act as variable determinants of specificity and GACG tetraloops as conserved determinants in the formation of homodimers and heterodimers of gamma-retrovirus retroviral RNAs in vivo. The complementarity of loop sequences in the packaging signal upstream of the GACG tetraloops might therefore determine homo- and heterodimerization specificity and recombination activity of these viruses.


Assuntos
Vírus do Sarcoma Murino de Harvey/genética , Conformação de Ácido Nucleico , Mutação Puntual/genética , RNA Viral/química , RNA Viral/genética , Pareamento de Bases , Sequência de Bases , Sequência Conservada , Dimerização , Dados de Sequência Molecular , Estabilidade de RNA , RNA Viral/metabolismo , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA