Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 226(3): 770-784, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31880817

RESUMO

Pathogenic fungi often target the plant plasma membrane (PM) H+ -ATPase during infection. To identify pathogenic compounds targeting plant H+ -ATPases, we screened extracts from 10 Stemphylium species for their effect on H+ -ATPase activity. We identified Stemphylium loti extracts as potential H+ -ATPase inhibitors, and through chemical separation and analysis, tenuazonic acid (TeA) as a potent H+ -ATPase inhibitor. By assaying ATP hydrolysis and H+ pumping, we confirmed TeA as a H+ -ATPase inhibitor both in vitro and in vivo. To visualize in planta inhibition of the H+ -ATPase, we treated pH-sensing Arabidopsis thaliana seedlings with TeA and quantified apoplastic alkalization. TeA affected both ATPase hydrolysis and H+ pumping, supporting a direct effect on the H+ -ATPase. We demonstrated apoplastic alkalization of A. thaliana seedlings after short-term TeA treatment, indicating that TeA effectively inhibits plant PM H+ -ATPase in planta. TeA-induced inhibition was highly dependent on the regulatory C-terminal domain of the plant H+ -ATPase. Stemphylium loti is a phytopathogenic fungus. Inhibiting the plant PM H+ -ATPase results in membrane potential depolarization and eventually necrosis. The corresponding fungal H+ -ATPase, PMA1, is less affected by TeA when comparing native preparations. Fungi are thus able to target an essential plant enzyme without causing self-toxicity.


Assuntos
Arabidopsis , Ácido Tenuazônico , Arabidopsis/metabolismo , Ascomicetos , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo
2.
Mar Drugs ; 17(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731399

RESUMO

There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively. Here we report the identification of the two known isoquinoline alkaloids TMC-120A and TMC-120B as novel antiseizure compounds, which were isolated by bioactivity-guided purification from the marine-derived fungus Aspergillus insuetus. TMC-120A and TMC-120B were observed to significantly lower PTZ-induced seizures and epileptiform brain activity in the larval zebrafish PTZ seizure model. In addition, their structural analogues TMC-120C, penicisochroman G, and ustusorane B were isolated and also significantly lowered PTZ-induced seizures. Finally, TMC-120A and TMC-120B were investigated in a mouse model of drug-resistant focal seizures. Compound treatment significantly shortened the seizure duration, thereby confirming their antiseizure activity. These data underscore the possibility to translate findings in zebrafish to mice in the field of epilepsy and the potential of the marine environment for ASD discovery.


Assuntos
Alcaloides/farmacologia , Benzofuranos/farmacologia , Isoquinolinas/farmacologia , Convulsões/tratamento farmacológico , Peixe-Zebra/metabolismo , Animais , Anticonvulsivantes/farmacologia , Aspergillus/metabolismo , Modelos Animais de Doenças , Resistência a Medicamentos , Epilepsia/tratamento farmacológico , Larva/metabolismo , Masculino , Camundongos , Mar do Norte
3.
Insect Biochem Mol Biol ; 96: 51-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551461

RESUMO

The chemical composition of the scale insect Dactylopius coccus was analyzed with the aim to discover new possible intermediates in the biosynthesis of carminic acid. UPLC-DAD/HRMS analyses of fresh and dried insects resulted in the identification of three novel carminic acid analogues and the verification of several previously described intermediates. Structural elucidation revealed that the three novel compounds were desoxyerythrolaccin-O-glucosyl (DE-O-Glcp), 5,6-didehydroxyerythrolaccin 3-O-ß-D-glucopyranoside (DDE-3-O-Glcp), and flavokermesic acid anthrone (FKA). The finding of FKA in D. coccus provides solid evidence of a polyketide, rather than a shikimate, origin of coccid pigments. Based on the newly identified compounds, we present a detailed biosynthetic scheme that accounts for the formation of carminic acid (CA) in D. coccus and all described coccid pigments which share a flavokermesic acid (FK) core. Detection of coccid pigment intermediates in members of the Planococcus (mealybugs) and Pseudaulacaspis genera shows that the ability to form these pigments is taxonomically more widely spread than previously documented. The shared core-FK-biosynthetic pathway and wider taxonomic distribution suggests a common evolutionary origin for the trait in all coccid dye producing insect species.


Assuntos
Carmim/metabolismo , Hemípteros/metabolismo , Pigmentação/fisiologia , Animais , Hemípteros/genética
4.
Nat Commun ; 8(1): 1987, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215010

RESUMO

Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function.


Assuntos
Carmim/metabolismo , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Glucosiltransferases/metabolismo , Hemípteros/metabolismo , Animais , Glucosídeos/metabolismo , Glicosilação , Domínios Proteicos , Sinais Direcionadores de Proteínas
5.
Sci Rep ; 6: 26206, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193384

RESUMO

Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/- 1.9 µM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies.


Assuntos
Fusarium/metabolismo , Melaninas/biossíntese , Pigmentação , Antifúngicos/metabolismo , Vias Biossintéticas/genética , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Fusarium/genética , Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos , Concentração Inibidora 50 , Isoquinolinas/metabolismo , Família Multigênica
6.
Aquat Toxicol ; 157: 159-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456230

RESUMO

Bioassay-guided discovery of ichthyotoxic algal compounds using in vivo fish assays is labor intensive, costly, and highly regulated. Since the mode of action of most known algal-mediated fish-killing toxins is damage to the cell membranes in the gills, various types of cell-based bioassays are often used for bioassay guided purification of new ichthyotoxins. Here we tested the hypothesis that allelopathy is related to ichthyotoxicity and thus that a microalgal bioassay can be used as a proxy for ichthyotoxicity by comparing the toxicity of five strains of Prymnesium parvum toward rainbow trout (Oncorhynchus mykiss, 10 g) and the microalga Teleaulax acuta. No relationship between median effective concentrations (EC50s) on fish and median lethal concentrations (LC50s) on algae was observed in the 5 strains showing that a microalgal bioassay cannot be used as a proxy for ichthyotoxicity. Fish were more sensitive to P. parvum with EC50s ranging from 6×10(3) to 40×10(3) cells ml(-1), compared to the test alga where LC50s ranged from 30×10(3) to nearly non-toxic at 500×10(3) cells ml(-1). In addition, the cellular concentrations of two recently suggested ichthyotoxins produced by P. parvum, the "golden algae toxins", GAT 512 and a novel GAT 510, did not show any relationship to either ichthyotoxicity or allelopathy, and are not the biologically relevant toxins, but are simply lipids found in algal chloroplasts. Finally, we demonstrate that the recently suggested ichthyotoxin, oleamide, could not be detected in any of the five P. parvum strains above the limit of detection, nor was it found in a (13)C-labeled strain. Instead we document that oleamide can easily be extracted from plastic materials, which may have been the source of oleamide reported previously.


Assuntos
Alelopatia/fisiologia , Haptófitas/química , Haptófitas/fisiologia , Oncorhynchus mykiss , Animais , Bioensaio/normas , Brânquias/efeitos dos fármacos , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA