Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MAbs ; 9(6): 916-926, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28590212

RESUMO

Recombinant protein therapeutics have become increasingly useful in combating human diseases, such as cancer and those of genetic origin. One quality concern for protein therapeutics is the content and the structure of the aggregated proteins in the product, due to the potential immunogenicity of these aggregates. Collective efforts have led to a better understanding of some types of protein aggregates, and have revealed the diversity in the structure and cause of protein aggregation. In this work we used a broad range of analytical techniques to characterize the quinary structure (complexes in which each composing unit maintains native quaternary structure) of the stable non-covalent dimer and oligomers of a monoclonal IgG1λ antibody. The results supported a mechanism of intermolecular domain exchange involving the Fab domains of 2 or more IgG molecules. This mechanism can account for the native-like higher order (secondary, tertiary and disulfide bonding) structure, the stability of the non-covalent multimers, and the previously observed partial loss of the antigen-binding sites without changing the antigen-binding affinity and kinetics of the remaining sites (Luo et al., 2009, mAbs 1:491). Furthermore, the previously observed increase in the apparent affinity to various Fcγ receptors (ibid), which may potentially promote immunogenicity, was also explained by the quinary structure proposed here. Several lines of evidence indicated that the formation of multimers by the mechanism of intermolecular domain exchange took place mostly during expression, not in the purified materials. The findings in this work will advance our knowledge of the mechanisms for aggregation in therapeutic monoclonal antibodies.

2.
J Anal Toxicol ; 41(6): 551-558, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637216

RESUMO

Synthetic cannabinoids have become a ubiquitous challenge in forensic toxicology and seized drug analysis. Thermal degradation products have yet to be identified and evaluated for toxicity in comparison to parent and metabolic compounds. An investigation into these pyrolytic products, as the major route of ingestion is inhalation, may produce additional insight to understand the toxicity of synthetic cannabinoids. The pyrolysis of JWH-018 and 11 additional synthetic cannabinoids and six herbal plant substrates were conducted using an in-house constructed smoking simulator. After pyrolysis of herbal material alone, the plant substrate was spiked with the drug compounds to 2-5% w/w concentrations. Samples were collected, filtered, evaporated under nitrogen gas, reconstituted in methanol, and analyzed via gas chromatograph-mass spectrometer. Pyrolysis of the plant material alone produced 10 consistently observed compounds between the six plant species. The pyrolysis of the synthetic cannabinoids produced a total of 52 pyrolytic compounds, where 32 were unique to a particular parent compound and the remaining 20 were common products between multiple cannabinoids. The thermal degradation followed three major pathways that are outlined to assist in producing a predictive model for new synthetic cannabinoids that may arise in case samples. The observed pyrolytic products are also viable options for analysis in post mortem samples and the evaluation of toxicity.


Assuntos
Canabinoides/análise , Drogas Desenhadas/análise , Drogas Ilícitas/análise , Indóis/análise , Naftalenos/análise , Cromatografia Líquida , Toxicologia Forense , Cromatografia Gasosa-Espectrometria de Massas , Fumar Produtos sem Tabaco
3.
AAPS J ; 18(6): 1562-1575, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27604766

RESUMO

Trumenba (bivalent rLP2086) is a vaccine licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B (NmB) in individuals 10-25 years of age in the USA. The vaccine is composed of two factor H binding protein (fHbp) variants that were recombinantly expressed in Escherichia coli as native lipoproteins: rLP2086-A05 and rLP2086-B01. The vaccine was shown to induce potent bactericidal antibodies against a broad range of NmB isolates expressing fHbp that were different in sequence from the fHbp vaccine antigens. Here, we describe the characterization of the vaccine antigens including the elucidation of their structure which is characterized by two distinct motifs, the polypeptide domain and the N-terminal lipid moiety. In the vaccine formulation, the lipoproteins self-associate to form micelles driven by the hydrophobicity of the lipids and limited by the size of the folded polypeptides. The micelles help to increase the structural stability of the lipoproteins in the absence of bacterial cell walls. Analysis of the lipoproteins in Toll-like receptor (TLR) activation assays revealed their TLR2 agonist activity. This activity was lost with removal of the O-linked fatty acids, similar to removal of all lipids, demonstrating that this moiety plays an adjuvant role in immune activation. The thorough understanding of the structure and function of each moiety of the lipoproteins, as well as their relationship, lays the foundation for identifying critical parameters to guide vaccine development and manufacture.


Assuntos
Lipídeos/fisiologia , Lipoproteínas/fisiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Células HEK293 , Humanos , Vacinas Meningocócicas/química , Vacinas Meningocócicas/imunologia , Estrutura Molecular , Processamento de Proteína Pós-Traducional
4.
J Anal Toxicol ; 39(8): 617-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26378135

RESUMO

In recent years, N-methoxybenzyl-methoxyphenylethylamine (NBOMe) derivatives, a class of designer hallucinogenic drugs, have become popular drugs of abuse. These drugs have been the cause of severe intoxications and even deaths. They act as 5-HT2A receptors agonists and have been reported to produce serotonin-like syndrome with bizarre behavior, severe agitation and seizures persisting for as long as 3 days. The most commonly reported derivatives are 25I-NBOMe, 25B-NBOMe and 25C-NBOMe, respectively 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl) methyl]ethanamine, N-(2-methoxybenzyl)-2,5-dimethoxy-4-bromophenethylamine and N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine. Like many low dose hallucinogenic drugs these compounds are often sold on blotter paper. Three different types of commercially available blotter papers reported to contain NBOMe derivatives were obtained. These blotter papers were screened using Direct Analysis in Real Time AccuTOF(TM) mass spectrometry followed by confirmation and quantification by high-performance liquid chromatography triple quadrapole mass spectrometry. The major drug present on each of the three blotter products was different, 25I-NBOMe, 25C-NBOMe or 25B-NBOMe. The blotter papers were also found to have minute amounts of two or three NBOMe derivative impurities of 25H-NBOMe, 25I-NBOMe, 25C-NBOMe, 25B-NBOMe and/or 25D-NBOMe.


Assuntos
Anisóis/análise , Benzilaminas/análise , Dimetoxifeniletilamina/análogos & derivados , Fenetilaminas/análise , Cromatografia Líquida de Alta Pressão , Dimetoxifeniletilamina/análise , Espectrometria de Massas em Tandem
5.
Biologicals ; 43(4): 213-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26094124

RESUMO

Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc.


Assuntos
Fator VIII/biossíntese , Preparações de Ação Retardada , Fator VIII/isolamento & purificação , Fator VIII/uso terapêutico , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/uso terapêutico
6.
Bioconjug Chem ; 23(7): 1452-62, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22731748

RESUMO

Covalent attachment of poly(ethylene glycol) (PEG) to therapeutic proteins has been used to prolong in vivo exposure of therapeutic proteins. We have examined pharmacokinetic, biodistribution, and biophysical profiles of three different tumor necrosis factor alpha (TNF) Nanobody-40 kDa PEG conjugates: linear 1 × 40 KDa, branched 2 × 20 kDa, and 4 × 10 kDa conjugates. In accord with earlier reports, the superior PK profile was observed for the branched versus linear PEG conjugates, while all three conjugates had similar potency in a cell-based assay. Our results also indicate that (i) a superior PK profile of branched versus linear PEGs is likely to hold across species, (ii) for a given PEG size, the extent of PEG branching affects the PK profile, and (iii) tissue penetration may differ between linear and branched PEG conjugates in a tissue-specific manner. Biophysical analysis (R(g)/R(h) ratio) demonstrated that among the three protein-PEG conjugates the linear PEG conjugate had the most extended time-average conformation and the most exposed surface charges. We hypothesized that these biophysical characteristics of the linear PEG conjugate accounts for relatively less optimal masking of sites involved in elimination of the PEGylated Nanobodies (e.g., intracellular uptake and proteolysis), leading to lower in vivo exposure compared to the branched PEG conjugates. However, additional studies are needed to test this hypothesis.


Assuntos
Polietilenoglicóis/química , Anticorpos de Domínio Único/química , Fator de Necrose Tumoral alfa/farmacocinética , Animais , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Ratos , Ratos Sprague-Dawley , Anticorpos de Domínio Único/administração & dosagem , Distribuição Tecidual , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/química , Células U937
7.
MAbs ; 1(5): 491-504, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20065648

RESUMO

The in vitro binding of monomeric, dimeric and multimeric forms of monoclonal IgG1 molecules, designated mAb1 and mAb2, to the extracellular domains of Fcgamma receptors RI, RIIA and RIIIB were investigated using a surface plasmon resonance (SPR) based biosensor technique. Stable noncovalent and covalent dimers of mAb1 and mAb2, respectively, were isolated from CHO cell expressed materials. The dissociation constants of monomeric mAb1 and mAb2 were determined to be 1 nM for the FcgammaRI-binding and 6-12 microM for the FcgammaRIIA- and FcgammaRIIIB-binding. Dimeric mAb1 and mAb2 exhibited increased affinities, by 2-3 fold for FcgammaRI and 200-800 fold for FcgammaRIIA and FcgammaRIIIB. Further increases in binding were observed when the antibodies formed large immune complexes with multivalent antigens, but not in a linear relation with size. The binding properties of monomeric mAb2 were identical with and without a bound monovalent antigen, indicating that antigen-binding alone does not induce measurable change in binding of antibodies to Fcgamma receptors. Dimerization is sufficient to show enhancement in the receptor binding. Given the wide distribution of the low-affinity Fcgamma receptors on immune effector cells, the increased affinities to aggregated IgG may lead to some biological consequences, depending on the subsequent signal transduction events. The SPR-based in vitro binding assay is useful in evaluating Fcgamma receptor binding of various species in antibody-based biotherapeutics.


Assuntos
Anticorpos Monoclonais , Afinidade de Anticorpos , Imunoglobulina G , Multimerização Proteica , Receptores de IgG/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Complexo Antígeno-Anticorpo , Sítios de Ligação , Técnicas Biossensoriais , Células CHO , Cricetinae , Cricetulus , Dimerização , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Cinética , Ligação Proteica , Ressonância de Plasmônio de Superfície
8.
Protein Sci ; 14(9): 2246-57, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16131655

RESUMO

Aggregation of partially folded intermediates populated during protein folding processes has been described for many proteins. Likewise, partially unfolded chains, generated by perturbation of numerous proteins by heat or chemical denaturants, have also been shown to aggregate readily. However, the process of protein aggregation from native-state conditions is less well understood. Granulocyte-colony stimulating factor (G-CSF), a member of the four-helix bundle class of cytokines, is a therapeutically relevant protein involved in stimulating the growth and maturation of phagocytotic white blood cells. Under native-like conditions (37 degrees C [pH 7.0]), G-CSF shows a significant propensity to aggregate. Our data suggest that under these conditions, native G-CSF exists in equilibrium with an altered conformation, which is highly aggregation prone. This species is enriched in 1-2 M GdmCl, as determined by tryptophan fluorescence and increased aggregation kinetics. In particular, specific changes in Trp58 fluorescence report a local rearrangement in the large loop region between helices A and B. However, circular dichroism, reactivity toward cyanylation, and ANS binding demonstrate that this conformational change is subtle, having no substantial disruption of secondary and tertiary structure, reactivity of the free sulfhydryl at Cys17 or exposure of buried hydrophobic regions. There is no indication that this altered conformation is important to biological activity, making it an attractive target for rational protein stabilization.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fenômenos Biofísicos , Biofísica , Dicroísmo Circular , Cisteína/química , Fluorescência , Guanidina/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA