Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709757

RESUMO

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Assuntos
Peixes-Gato , DNA Mitocondrial , Variação Genética , Endogamia , Repetições de Microssatélites , Animais , Peixes-Gato/genética , Tailândia , Repetições de Microssatélites/genética , DNA Mitocondrial/genética , Genótipo , Aquicultura , População do Norte da África
2.
Biology (Basel) ; 12(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998027

RESUMO

Hybrids between the critically endangered Siamese crocodile (Crocodylus siamensis) and least-concern saltwater crocodile (C. porosus) in captive populations represent a serious challenge for conservation and reintroduction programs due to the impact of anthropogenic activities. A previous study used microsatellite and mitochondrial DNA data to establish the criteria for identifying species and their hybrids; however, the results may have been influenced by biased allelic frequencies and genetic drift within the examined population. To overcome these limitations and identify the true signals of selection, alternative DNA markers and a diverse set of populations should be employed. Therefore, this study used DArT sequencing to identify genome-wide single nucleotide polymorphisms (SNPs) in both species and confirm the genetic scenario of the parental species and their hybrids. A population of saltwater crocodiles from Australia was used to compare the distribution of species-diagnostic SNPs. Different analytical approaches were compared to diagnose the level of hybridization when an admixture was present, wherein three individuals had potential backcrossing. Approximately 17.00-26.00% of loci were conserved between the Siamese and saltwater crocodile genomes. Species-diagnostic SNP loci for Siamese and saltwater crocodiles were identified as 8051 loci and 1288 loci, respectively. To validate the species-diagnostic SNP loci, a PCR-based approach was used by selecting 20 SNP loci for PCR primer design, among which 3 loci were successfully able to differentiate the actual species and different hybridization levels. Mitochondrial and nuclear genetic information, including microsatellite genotyping and species-diagnostic DNA markers, were combined as a novel method that can compensate for the limitations of each method. This method enables conservation prioritization before release into the wild, thereby ensuring sustainable genetic integrity for long-term species survival through reintroduction and management programs.

3.
Biology (Basel) ; 12(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886990

RESUMO

Microsatellites are polymorphic and cost-effective. Optimizing reduced microsatellite panels using heuristic algorithms eases budget constraints in genetic diversity and population genetic assessments. Microsatellite marker efficiency is strongly associated with its polymorphism and is quantified as the polymorphic information content (PIC). Nevertheless, marker selection cannot rely solely on PIC. In this study, the ant colony optimization (ACO) algorithm, a widely recognized optimization method, was adopted to create an enhanced selection scheme for refining microsatellite marker panels, called the PIC-ACO selection scheme. The algorithm was fine-tuned and validated using extensive datasets of chicken (Gallus gallus) and Chinese gorals (Naemorhedus griseus) from our previous studies. In contrast to basic optimization algorithms that stochastically initialize potential outputs, our selection algorithm utilizes the PIC values of markers to prime the ACO process. This increases the global solution discovery speed while reducing the likelihood of becoming trapped in local solutions. This process facilitated the acquisition of a cost-efficient and optimized microsatellite marker panel for studying genetic diversity and population genetic datasets. The established microsatellite efficiency metrics such as PIC, allele richness, and heterozygosity were correlated with the actual effectiveness of the microsatellite marker panel. This approach could substantially reduce budgetary barriers to population genetic assessments, breeding, and conservation programs.

4.
Genomics Inform ; 21(3): e39, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37813635

RESUMO

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

5.
Chromosome Res ; 31(4): 29, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775555

RESUMO

Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, "MicrosatNavigator", a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.


Assuntos
Genoma , Vertebrados , Animais , Vertebrados/genética , Repetições de Microssatélites , Cromossomos Sexuais/genética , Genômica , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA