Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1333745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292023

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.

2.
Front Oncol ; 12: 983507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091138

RESUMO

The complexity of the microenvironment effects on cell response, show accumulating evidence that glioblastoma (GBM) migration and invasiveness are influenced by the mechanical rigidity of their surroundings. The epithelial-mesenchymal transition (EMT) is a well-recognized driving force of the invasive behavior of cancer. However, the primary mechanisms of EMT initiation and progression remain unclear. We have previously showed that certain substrate stiffness can selectively stimulate human GBM U251-MG and GL15 glioblastoma cell lines motility. The present study unifies several known EMT mediators to uncover the reason of the regulation and response to these stiffnesses. Our results revealed that changing the rigidity of the mechanical environment tuned the response of both cell lines through change in morphological features, epithelial-mesenchymal markers (E-, N-Cadherin), EGFR and ROS expressions in an interrelated manner. Specifically, a stiffer microenvironment induced a mesenchymal cell shape, a more fragmented morphology, higher intracellular cytosolic ROS expression and lower mitochondrial ROS. Finally, we observed that cells more motile showed a more depolarized mitochondrial membrane potential. Unravelling the process that regulates GBM cells' infiltrative behavior could provide new opportunities for identification of new targets and less invasive approaches for treatment.

3.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
4.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471239

RESUMO

BACKGROUND: At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aß) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS: We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aß(1-42) into the hippocampus. RESULTS: Glial activation and elevated levels of proinflammatory mediators were observed in Aß-infused rats. Early administration of co-ultra PEALut prevented the Aß-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS: Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aß-induced alterations, suggesting it as a valuable therapeutic strategy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Etanolaminas/uso terapêutico , Gliose/tratamento farmacológico , Luteolina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Combinação de Medicamentos , Etanolaminas/administração & dosagem , Etanolaminas/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gliose/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Luteolina/administração & dosagem , Luteolina/farmacologia , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Sintomas Prodrômicos , Ratos , Ratos Sprague-Dawley
5.
Cancers (Basel) ; 11(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510037

RESUMO

Background: A great number of therapeutic limitations, such as chemoresistance, high dosage, and long treatments, are still present in cancer therapy, and are often followed by side effects such as infections, which represent the primary cause of death among patients. Methods: We report pH- and enzymatic-responsive hybrid clustered nanoparticles (HC-NPs), composed of a PCL polymeric core loaded with an anticancer drug, such as Imatinib Mesylate (IM), and coated with biodegradable multilayers embedded with antibacterial and anticancer baby-ship silver NPs, as well as a monoclonal antibody for specific targeting of cancer cells conjugated on the surface. Results: The HC-NPs presented an onion-like structure that serially responded to endogenous stimuli. After internalization into targeted cancer cells, the clustered nanoparticles were able to break up, thanks to intracellular proteases which degraded the biodegradable multilayers and allowed the release of the baby-ship NPs and the IM loaded within the pH-sensible polymer present inside the mothership core. In vitro studies validated the efficiency of HC-NPs in human chronic leukemic cells. This cellular model allowed us to demonstrate specificity and molecular targeting sensitivity, achieved by using a combinatorial approach inside a single nano-platform, instead of free administrations. The combinatory effect of chemotherapic drug and AgNPs in one single nanosystem showed an improved cell death efficacy. In addition, HC-NPs showed a good antibacterial capacity on Gram-negative and Gram-positive bacteria. Conclusions: This study shows an important combinatorial anticancer and antimicrobial effect in vitro.

6.
Neuropharmacology ; 158: 107739, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408628

RESUMO

Growing evidences demonstrate that chemokines and chemokine receptors are up-regulated in resident central nervous system cells during Alzheimer's disease contributing to neuroinflammation and neurodegeneration. Prokineticin 2 belongs to a new family of chemokines which recently emerged as a critical player in immune system and inflammatory diseases. Since pharmacological blockade in vitro of the prokineticin system is able to antagonize Amyloid ß-induced neurotoxicity, the aim of the present study was to investigate in vivo effects of prokineticin receptor antagonist PC1 on memory impairment in a rodent model of Alzheimer's disease. Rats were intracerebroventricular infused with Aß1-42 and behavioral responses as well as the expression profile in hippocampus of prokineticin 2 and its receptors were investigated. Results demonstrated that Aß1-42-infused rats developed significant memory impairments together with a marked up-regulation of both prokineticin 2 and its receptors in hippocampal neurons and astrocytes. Treatment with PC1 significantly improved learning capability of Aß1-42-infused rats restoring the balance of prokineticin system. This study pointed to a neuroprotective role of PC1 on Aß1-42-induced memory deficits that could be ascribed to the ability of PC1 to modulate rat hippocampal prokineticin system and to recover the impaired Aß1-42-induced neurogenesis. This suggests that prokineticin system antagonism could be considered as a new approach for the study of AD etiopathology.


Assuntos
Doença de Alzheimer , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Neuropeptídeos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Peptídeos/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Animais , Modelos Animais de Doenças , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/metabolismo , Gliose , Guanidinas/farmacologia , Hipocampo/metabolismo , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Aprendizagem Espacial/efeitos dos fármacos , Triazinas/farmacologia
7.
Cancers (Basel) ; 11(5)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075964

RESUMO

Background: A hallmark of glioblastoma is represented by their ability to widely disperse throughout the brain parenchyma. The importance of developing new anti-migratory targets is critical to reduce recurrence and improve therapeutic efficacy. Methods: Polydimethylsiloxane substrates, either mechanically uniform or presenting durotactic cues, were fabricated to assess GBM cell morphological and dynamical response with and without pharmacological inhibition of NNMII contractility, of its upstream regulator ROCK and actin polymerization. Results: Glioma cells mechanotactic efficiency varied depending on the rigidity compliance of substrates. Morphologically, glioma cells on highly rigid and soft bulk substrates displayed bigger and elongated aggregates whereas on durotactic substrates the same cells were homogeneously dispersed with a less elongated morphology. The durotactic cues also induced a motility change, cell phenotype dependent, and with cells being more invasive on stiffer substrates. Pharmacological inhibition of myosin or ROCK revealed a rigidity-insensitivity, unlike inhibition of microfilament contraction and polymerization of F-actin, suggesting that alternative signalling is used to respond to durotactic cues. Conclusions: The presence of a distinct mechanical cue is an important factor in cell migration. Together, our results provide support for a durotactic role of glioma cells that acts through actomyosin contractility to regulate the aggressive properties of GBM cells.

8.
Bio Protoc ; 9(8): e3220, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33655009

RESUMO

Microglia are the resident immune cells of the central nervous system (CNS). In the last year, the improvements in the transgenic mouse technologies and imaging techniques have shed light on microglia functions under physiological conditions. Microglia continuously scan the brain parenchyma with their highly motile processes, maintaining tissue homeostasis and participating in neuronal circuits refinement. Here, we describe a protocol that enables us to perform time-lapse imaging of microglial cells in acute hippocampal slices, making image acquisition possible on an electrophysiology rig equipped with a standard imaging system. Using this ex vivo approach, we investigated microglial processes scanning abilities under physiological condition in hippocampus.

9.
Neuropharmacology ; 138: 210-218, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29842858

RESUMO

The endocannabinoid system is a key modulator of memory consolidation for aversive experiences. We recently found that the fatty acid amide hydrolase (FAAH) inhibitor URB597, which increases anandamide levels by inhibiting its hydrolysis, facilitates memory consolidation through a concurrent activation of both cannabinoid receptor type 1 (CB1) and 2 (CB2). Here, we investigated the role played on memory consolidation by the other major endocannabinoid, 2-arachidonoylglycerol (2-AG). To this aim, we tested the effects of pharmacological inhibition of monoacylglycerol lipase (MAGL) through systemic administration of the MAGL inhibitor JZL184 to rats immediately after training of the inhibitory avoidance task. Pharmacological enhancement of 2-AG tone facilitated memory consolidation through activation of CB2 receptor signaling. Moreover, we found that increased 2-AG signaling prevented the activation of the mammalian target of rapamycin (mTOR) signaling pathway in the hippocampus through a CB2-dependent mechanism. Our results identify a fundamental role for 2-AG and CB2 receptors in the modulation of memory consolidation for aversive experiences.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Hidrólise/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Benzodioxóis/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Consolidação da Memória/fisiologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Piperidinas/farmacologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Biomed Microdevices ; 19(3): 44, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28526975

RESUMO

This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.


Assuntos
Benzamidas/química , Carbamatos/química , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Água/química , Animais , Benzamidas/metabolismo , Encéfalo/metabolismo , Carbamatos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Glicerídeos/química , Cinética , Masculino , Tamanho da Partícula , Polissorbatos/química , Ratos , Ratos Wistar , Solubilidade , Distribuição Tecidual , Triglicerídeos/química
11.
Front Pharmacol ; 8: 200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28446875

RESUMO

The effects induced by exogenous manipulation of endocannabinoid neurotransmission on emotion and memory are often contradictory. Among the different factors involved, of particular interest is the binding affinity of endocannabinoids, and their analogs, for other receptor families beyond cannabinoid receptors, such as the peroxisome proliferator-activated receptors (PPARs), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). The aim of this study was to investigate which receptor subtype mediates cannabinoid effects on memory consolidation for emotionally arousing experiences. We tested two cannabinoid compounds with different pharmacological properties in the inhibitory avoidance task, and evaluated whether the observed effects are mediated by cannabinoid, PPARα or TRPV1 receptor activation. We found that the synthetic cannabinoid agonist WIN55,212-2 and the FAAH inhibitor URB597 both enhanced memory consolidation for inhibitory avoidance training. WIN55,212-22 effects on memory consolidation were predominantly mediated by CB1 receptor activation but CB2 receptors were involved as well. The URB597-induced memory enhancement was dependent on the activation not only of CB1 and CB2 receptors but, notwithstanding, PPAR-α and TRPV1 receptors were involved as well. Our findings drive beyond the classical hypothesis centered on the unique role of CB1 receptor activation for cannabinoid effects on memory, and reveal new insights in the neural mechanisms of memory consolidation.

12.
eNeuro ; 2(1)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464966

RESUMO

Disrupting maladaptive memories may provide a novel form of treatment for neuropsychiatric disorders, but little is known about the neurochemical mechanisms underlying the induction of lability, or destabilization, of a retrieved consolidated memory. Destabilization has been theoretically linked to the violation of expectations during memory retrieval, which, in turn, has been suggested to correlate with prediction error (PE). It is well-established that PE correlates with dopaminergic signaling in limbic forebrain structures that are critical for emotional learning. The basolateral amygdala is a key neural substrate for the reconsolidation of pavlovian reward-related memories, but the involvement of dopaminergic mechanisms in inducing lability of amygdala-dependent memories has not been investigated. Therefore, we tested the hypothesis that dopaminergic signaling within the basolateral amygdala is required for the destabilization of appetitive pavlovian memories by investigating the effects dopaminergic and protein synthesis manipulations on appetitive memory reconsolidation in rats. Intra-amygdala administration of either the D1-selective dopamine receptor antagonist SCH23390 or the D2-selective dopamine receptor antagonist raclopride prevented memory destabilization at retrieval, thereby protecting the memory from the effects of an amnestic agent, the protein synthesis inhibitor anisomycin. These data show that dopaminergic transmission within the basolateral amygdala is required for memory labilization during appetitive memory reconsolidation.

13.
Mater Sci Eng C Mater Biol Appl ; 48: 328-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579930

RESUMO

This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration.


Assuntos
Antagonistas de Receptores de Canabinoides , Lipídeos , Nanocápsulas , Piperidinas , Pirazóis , Animais , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Masculino , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Piperidinas/química , Piperidinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Rimonabanto
14.
Proc Natl Acad Sci U S A ; 111(51): 18333-8, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489086

RESUMO

Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The experiments first examined whether the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are released by aversive training. Inhibitory avoidance training with higher footshock intensity produced increased levels of AEA in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) shortly after training in comparison with levels assessed in rats trained with lower footshock intensity or unshocked controls exposed only to the training apparatus. In contrast, 2-AG levels were not significantly elevated. The additional finding that posttraining infusions of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which selectively increases AEA levels at active synapses, administered into the basolateral complex of the amygdala (BLA), hippocampus, or mPFC enhanced memory strongly suggests that the endogenously released AEA modulates memory consolidation. Moreover, in support of the view that this emotional training-associated increase in endocannabinoid neurotransmission, and its effects on memory enhancement, depends on the integrity of functional interactions between these different brain regions, we found that disruption of BLA activity blocked the training-induced increases in AEA levels as well as the memory enhancement produced by URB597 administered into the hippocampus or mPFC. Thus, the findings provide evidence that emotionally arousing training increases AEA levels within prefrontal-limbic circuits and strongly suggest that this cannabinoid activation regulates emotional arousal effects on memory consolidation.


Assuntos
Ácidos Araquidônicos/metabolismo , Emoções , Endocanabinoides/metabolismo , Sistema Límbico/fisiologia , Memória , Alcamidas Poli-Insaturadas/metabolismo , Córtex Pré-Frontal/fisiologia , Amidoidrolases/antagonistas & inibidores , Animais , Aprendizagem da Esquiva , Benzamidas/farmacologia , Carbamatos/farmacologia , Glicerídeos/metabolismo , Sistema Límbico/enzimologia , Córtex Pré-Frontal/enzimologia , Ratos , Receptor CB1 de Canabinoide/agonistas
15.
Neuropsychopharmacology ; 39(11): 2529-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24801769

RESUMO

We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Medo/efeitos dos fármacos , Memória/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Benzamidas/farmacologia , Bicuculina/farmacologia , Carbamatos/farmacologia , Condicionamento Clássico , Eletrochoque , Inibidores Enzimáticos/farmacologia , Medo/fisiologia , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Memória/fisiologia , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptores de GABA-A/metabolismo
16.
PLoS One ; 8(11): e78036, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265678

RESUMO

Reduced levels of Substance P (SP), an endogenous neuropeptide endowed with neuroprotective and anti-apoptotic properties, have been found in brain and spinal fluid of Alzheimer's disease (AD) patients. Potassium (K(+)) channel dysfunction is implicated in AD development and the amyloid-ß (Aß)-induced up-regulation of voltage-gated potassium channel subunits could be considered a significant step in Aß brain toxicity. The aim of this study was to evaluate whether SP could reduce, in vivo, Aß-induced overexpression of Kv subunits. Rats were intracerebroventricularly infused with amyloid-ß 25-35 (Aß25-35, 20 µg) peptide. SP (50 µg/Kg, i.p.) was daily administered, for 7 days starting from the day of the surgery. Here we demonstrate that the Aß infused rats showed impairment in cognitive performances in the Morris water maze task 4 weeks after Aß25-35 infusion and that this impairing effect was prevented by SP administration. Kv1.4, Kv2.1 and Kv4.2 subunit levels were quantified in hippocampus and in cerebral cortex by Western blot analysis and immunofluorescence. Interestingly, SP reduced Kv1.4 levels overexpressed by Aß, both in hippocampus and cerebral cortex. Our findings provide in vivo evidence for a neuroprotective activity of systemic administration of SP in a rat model of AD and suggest a possible mechanism underlying this effect.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Cognição/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Substância P/administração & dosagem , Substância P/farmacologia , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Canal de Potássio Kv1.4/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Substância P/uso terapêutico
17.
J Neurosci ; 33(3): 1109-15, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325248

RESUMO

Signaling at NMDA receptors (NMDARs) is known to be important for memory reconsolidation, but while most studies show that NMDAR antagonists prevent memory restabilization and produce amnesia, others have shown that GluN2B-selective NMDAR antagonists prevent memory destabilization, protecting the memory. These apparently paradoxical, conflicting data provide an opportunity to define more precisely the requirement for different NMDAR subtypes in the mechanisms underlying memory reconsolidation and to further understand the contribution of glutamatergic signaling to this process. Here, using rats with fully consolidated pavlovian auditory fear memories, we demonstrate a double dissociation in the requirement for GluN2B-containing and GluN2A-containing NMDARs within the basolateral amygdala in the memory destabilization and restabilization processes, respectively. We further show a double dissociation in the mechanisms underlying memory retrieval and memory destabilization, since AMPAR antagonism prevented memory retrieval while still allowing the destabilization process to occur. These data demonstrate that glutamatergic signaling mechanisms within the basolateral amygdala differentially and dissociably mediate the retrieval, destabilization, and restabilization of previously consolidated fear memories.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Aprendizagem por Associação/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tonsila do Cerebelo/metabolismo , Animais , Anisomicina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Masculino , Piperidinas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Front Behav Neurosci ; 6: 11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22454620

RESUMO

Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5-5 mg/kg, i.p.) on both emotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimental settings, named High Arousal (HA) and Low Arousal (LA) conditions. The two different experimental conditions influenced emotional reactivity independently of drug administration. Indeed, vehicle-treated rats exposed to the LA condition spent more time in the center of the arena than vehicle-treated rats exposed to the HA context. Conversely, the different arousal conditions did not affect the cognitive performances of vehicle-treated animals such as the capability to discriminate a spatial displacement of the objects or an object substitution. AM404 administration did not alter locomotor activity or emotional behavior of animals exposed to both environmental conditions. Interestingly, AM404 administration influenced the cognitive parameters depending on the level of emotional arousal: it impaired the capability of rats exposed to the HA condition to recognize a novel object while it did not induce any impairing effect in rats exposed to the LA condition. These findings suggest that drugs enhancing endocannabinoid signaling induce different effects on recognition memory performance depending on the level of emotional arousal induced by the environmental conditions.

19.
Anesthesiology ; 114(6): 1380-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21532463

RESUMO

BACKGROUND: Propofol is associated with postoperative mood alterations and induces a higher incidence of dreaming compared with other general anesthetics. These effects might be mediated by propofol's inhibitory action on fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid anandamide. Because propofol is also associated with a higher incidence of traumatic memories from perioperative awareness and intensive care unit treatment and the endocannabinoid system is involved in regulating memory consolidation of emotional experiences, the authors investigated whether propofol, at anesthetic doses, modulates memory consolidation via an activation of the endocannabinoid system. METHODS: Male Sprague-Dawley rats were trained on an inhibitory avoidance task in which they received an inescapable foot shock upon entering the dark compartment of the apparatus. Drugs were administered intraperitoneally immediately or 30, 90, or 180 min after training. On the retention test 48 h later, the latency to reenter the dark compartment was recorded and taken as a measure of memory retention. RESULTS: The anesthetic doses of propofol administered after training significantly increased latencies of 48-h inhibitory avoidance performance (483.4 ± 181.3, 432.89 ± 214.06, 300 and 350 mg/kg, respectively; mean ± SD) compared with the corresponding vehicle group (325.33 ± 221.22, mean ± SD), which is indicative of stronger memory consolidation in propofol treated rats. Administration of a nonimpairing dose of the cannabinoid receptor antagonist rimonabant blocked the memory enhancement induced by propofol (123.39 ± 133.10, mean ± SD). Delayed administration of propofol 90 and 180 min after training or immediate posttraining administration of the benzodiazepine midazolam or the barbiturate pentobarbital did not significantly alter retention. CONCLUSIONS: These findings indicate that propofol, in contrast to other commonly used sedatives, enhances emotional memory consolidation when administered immediately after a stressful event by enhancing endocannabinoid signaling.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Memória/efeitos dos fármacos , Propofol/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Masculino , Memória/fisiologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Propofol/farmacologia , Pirazóis/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto
20.
Psychopharmacology (Berl) ; 214(1): 5-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20556598

RESUMO

RATIONALE: Cannabis is the most commonly used illicit drug among pregnant women. Since the endocannabinoid system plays a crucial role in brain development, maternal exposure to cannabis derivatives might result in long-lasting neurobehavioral abnormalities in the exposed offspring. It is difficult to detect these effects, and their underlying neurobiological mechanisms, in clinical cohorts, because of their intrinsic methodological and interpretative issues. OBJECTIVES: The present paper reviews relevant rodent studies examining the long-term behavioral consequences of exposure to cannabinoid compounds during pregnancy and/or lactation. RESULTS: Maternal exposure to even low doses of cannabinoid compounds results in atypical locomotor activity, cognitive impairments, altered emotional behavior, and enhanced sensitivity to drugs of abuse in the adult rodent offspring. Some of the observed behavioral abnormalities might be related to alterations in stress hormone levels induced by maternal cannabis exposure. CONCLUSIONS: There is increasing evidence from animal studies showing that cannabinoid drugs are neuroteratogens which induce enduring neurobehavioral abnormalities in the exposed offspring. Several preclinical findings reviewed in this paper are in line with clinical studies reporting hyperactivity, cognitive impairments and altered emotionality in humans exposed in utero to cannabis. Conversely, genetic, environmental and social factors could also influence the neurobiological effects of early cannabis exposure in humans.


Assuntos
Canabinoides/efeitos adversos , Cannabis/química , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Canabinoides/administração & dosagem , Transtornos Cognitivos/induzido quimicamente , Emoções/efeitos dos fármacos , Feminino , Humanos , Lactação , Atividade Motora/efeitos dos fármacos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA