Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 114(3): 291-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38029731

RESUMO

INTRODUCTION: The superficial pineal gland of the Sprague Dawley rat is a neuroendocrine structure secreting the hormone melatonin. By use of block face scanning electron microscopy, our aim here was to identify the 3-dimensional ultrastructure of the gland. METHODS: A series of 2,731 block face images of the rat pineal tissue, 30 nm in thickness, was obtained in a Teneo volume scanning electron microscope and used for 3-dimensional reconstruction by use of the TrakEM2-plugin in the ImageJ software. Thin sections of the tissue were cut for transmission electron microscopy. RESULTS: Our analyses revealed cellular bulbous processes, containing 50-100 nm clear vesicles, that emerged from a neck-like area at the cell body of the pinealocyte. These bulbous processes extend into small canaliculi located in the center of parenchymal folliculi of the gland as well as into the perivascular spaces. Junctional complexes, comprising both gap and tight junctions, connected the lateral cellular membranes of the pinealocytes, where the bulbous processes emerged from the cell bodies. The canaliculi were, via the extracellular space, connected to the perivascular spaces. DISCUSSION: The junctional complexes reported here would prevent a substance, released from the vesicles in the bulbous processes, from targeting the cell body from which they emerge. In line with previous combined morphological and biochemical demonstrations of glutamate located in clear vesicles of bulbous processes in the rat pineal gland, our data ultrastructurally support the concept that bulbous processes could participate in a paracrine glutamatergic inhibition of the melatonin secretion in the pineal gland. CONCLUSION: Bulbous secretory projections separated from the cell body by a junctional complex represents a new feature of neuroendocrine cells.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , Corpo Celular , Ratos Sprague-Dawley , Melatonina/metabolismo , Glândula Pineal/metabolismo
2.
Glia ; 71(11): 2623-2641, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37470358

RESUMO

Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.


Assuntos
Relógios Circadianos , Neocórtex , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Astrócitos/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Proteoma/metabolismo , Proteômica
3.
Neuroendocrinology ; 113(10): 1076-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37517388

RESUMO

INTRODUCTION: In the hippocampus, clock gene expression is important for memory and mood; however, the signaling mechanism controlling clock gene expression in the hippocampus is unknown. Recent findings suggest that circadian glucocorticoid rhythms driven by the suprachiasmatic nucleus (SCN) control rhythmic clock gene expression in neurons; in addition, dexamethasone modulates hippocampal clock gene expression. We therefore hypothesized that oscillations of clock genes in the hippocampus could be driven by SCN-controlled circadian rhythms in glucocorticoids. METHODS: Temporal profiles of hippocampal clock gene expression were established by quantitative reverse-transcription real-time PCR on rat hippocampi, while cellular distribution was established by in situ hybridization. To determine the effect of rhythmic glucocorticoids on hippocampal clock gene expression, the SCN was lesioned, adrenal glands removed and a 24 h exogenous corticosterone rhythm at physiological levels was reestablished by use of a programmable infusion pump. RESULTS: Daily rhythms were detected for Per1, Per2, Bmal1, Nr1d1, and Dbp, while clock gene products were confirmed in both the hippocampus proper and the dentate gyrus. In sham controls, differential hippocampal expression of Per1 and Dbp between ZT3 and ZT15 was detectable. This rhythm was abolished by SCN lesion; however, reestablishing the natural rhythm in corticosterone restored differential rhythmic expression of both Per1 and Dbp. Further, a 6 h phase delay in the corticosterone profile caused a predictable shift in expression of Nr1d1. CONCLUSION: Our data show that rhythmic corticosterone can drive hippocampal clock gene rhythms suggesting that the SCN regulates the circadian oscillator of the hippocampus by controlling the circadian rhythm in circulating glucocorticoids.


Assuntos
Relógios Circadianos , Ratos , Animais , Relógios Circadianos/genética , Corticosterona/farmacologia , Corticosterona/metabolismo , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hipocampo/metabolismo
4.
Fluids Barriers CNS ; 19(1): 69, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068581

RESUMO

BACKGROUND: A range of neurological pathologies may lead to secondary hydrocephalus. Treatment has largely been limited to surgical cerebrospinal fluid (CSF) diversion, as specific and efficient pharmacological options are lacking, partly due to the elusive molecular nature of the CSF secretion apparatus and its regulatory properties in physiology and pathophysiology. METHODS: CSF obtained from patients with subarachnoid hemorrhage (SAH) and rats with experimentally inflicted intraventricular hemorrhage (IVH) was analyzed for lysophosphatidic acid (LPA) by alpha-LISA. We employed the in vivo rat model to determine the effect of LPA on ventricular size and brain water content, and to reveal the effect of activation and inhibition of the transient receptor potential vanilloid 4 (TRPV4) ion channel on intracranial pressure and CSF secretion rate. LPA-mediated modulation of TRPV4 was determined with electrophysiology and an ex vivo radio-isotope assay was employed to determine the effect of these modulators on choroid plexus transport. RESULTS: Elevated levels of LPA were observed in CSF obtained from patients with subarachnoid hemorrhage (SAH) and from rats with experimentally-inflicted intraventricular hemorrhage (IVH). Intraventricular administration of LPA caused elevated brain water content and ventriculomegaly in experimental rats, via its action as an agonist of the choroidal transient receptor potential vanilloid 4 (TRPV4) channel. TRPV4 was revealed as a novel regulator of ICP in experimental rats via its ability to modulate the CSF secretion rate through its direct activation of the Na+/K+/2Cl- cotransporter (NKCC1) implicated in CSF secretion. CONCLUSIONS: Together, our data reveal that a serum lipid present in brain pathologies with hemorrhagic events promotes CSF hypersecretion and ensuing brain water accumulation via its direct action on TRPV4 and its downstream regulation of NKCC1. TRPV4 may therefore be a promising future pharmacological target for pathologies involving brain water accumulation.


Assuntos
Hidrocefalia , Hemorragia Subaracnóidea , Animais , Hemorragia Cerebral/complicações , Hidrocefalia/cirurgia , Lisofosfolipídeos , Ratos , Hemorragia Subaracnóidea/complicações , Canais de Cátion TRPV , Água
5.
Methods Mol Biol ; 2550: 75-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180679

RESUMO

Radiochemical in situ hybridization enables detection of gene expression in small areas of the brain, such as the developing pineal gland in rodents. The method combines determination of spatial and temporal gene expression profiles with semiquantitative analyses. We here describe the procedure of radiochemical in situ hybridization on the developing rat pineal gland ranging from preparation of fetal tissue for in situ hybridization to principles of quantification.


Assuntos
Glândula Pineal , Animais , Hibridização In Situ , Glândula Pineal/química , Glândula Pineal/metabolismo , RNA Mensageiro/metabolismo , Ratos
6.
Methods Mol Biol ; 2550: 113-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180684

RESUMO

Suspension primary cultures of rat pineal cells have been used for decades to determine biochemical regulatory mechanisms of pineal melatonin synthesis, but more recently, RNA interference technology has made the study of the role of specific genes in this melatonin-proficient model system possible. We here present a protocol for preparing rat pineal cell cultures and efficiently knock down gene expression by use of synthetic siRNA.


Assuntos
Melatonina , Glândula Pineal , Animais , Células Cultivadas , Regulação para Baixo , Expressão Gênica , Melatonina/genética , Melatonina/metabolismo , Glândula Pineal/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Pineal Res ; 72(4): e12795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35249239

RESUMO

The pineal gland is a neuroendocrine structure in the brain, which produces and secretes the hormone melatonin at nighttime and is considered a key element in the circadian clock system. Early morphogenesis of the gland is controlled by a number of transcription factors, some of which remain active in adult life. One of these is the brain-specific homeobox (Bsx), a highly conserved homeodomain transcription factor with a developmental role in the pineal gland of several species, including zebrafish, and regulatory roles in mature pinealocytes of the rat. To determine the role of Bsx in circadian biology, we here examined the effects of a bsx loss-of-function mutation on the pineal gland in adult zebrafish and on behavioral circadian rhythms in larvae. In pineal cell type-specific Gfp/Egfp reporter zebrafish lines, we did not detect fluorescence signals in the pineal area of homozygous (bsx-/- ) mutants. Interestingly, a nonpigmented area on the dorsal surface of the head above the gland, known as the pineal window, was pigmented in the homozygous mutants. Furthermore, a structure corresponding to the pineal gland was not detectable in the midline of the adult brain in histological sections analyzed by Nissl staining and S-antigen immunohistochemistry. Moreover, the levels of pineal transcripts were greatly reduced in bsx-/- mutants, as revealed by quantitative real-time polymerase chain reaction analysis. Notably, analysis of locomotor activity at the larval stage revealed altered circadian rhythmicity in the bsx mutants with periods and phases similar to wildtype, but severely reduced amplitudes in locomotor activity patterns. Thus, Bsx is essential for full development of the pineal gland, with its absence resulting in a phenotype of morphological pineal gland ablation and disrupted circadian behavior.


Assuntos
Melatonina , Glândula Pineal , Animais , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Melatonina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Glândula Pineal/metabolismo , Ratos , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
8.
Front Physiol ; 12: 706433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776993

RESUMO

The central circadian clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, but an SCN-dependent molecular circadian oscillator is present in the cerebellar cortex. Recent findings suggest that circadian release of corticosterone is capable of driving the circadian oscillator of the rat cerebellum. To determine if additional neuroendocrine signals act to shape cerebellar clock gene expression, we here tested the role of the thyroid hormone triiodothyronine (T3) in regulation of the cerebellar circadian oscillator. In cultured cerebellar granule cells from mixed-gender neonatal rats, T3 treatment affected transcript levels of the clock genes Per2, Arntl, Nr1d1, and Dbp, suggesting that T3 acts directly on granule cells to control the circadian oscillator. We then used two different in vivo protocols to test the role of T3 in adult female rats: Firstly, a single injection of T3 did not influence clock gene expression in the cerebellum. Secondly, we established a surgical rat model combining SCN lesion with a programmable micropump infusing circadian physiological levels of T3; however, rhythmic infusion of T3 did not reestablish differential clock gene expression between day and night in SCN lesioned rats. To test if the effects of T3 observed in vitro were related to the developmental stage, acute injections of T3 were performed in mixed-gender neonatal rats in vivo; this procedure significantly affected cerebellar expression of the clock genes Per1, Per2, Nr1d1, and Dbp. Developmental comparisons showed rhythmic expression of all clock genes analyzed in the cerebellum of adult rats only, whereas T3 responsiveness was limited to neonatal animals. Thus, T3 shapes cerebellar clock gene profiles in early postnatal stages, but it does not represent a systemic circadian regulatory mechanism linking the SCN to the cerebellum throughout life.

9.
J Pineal Res ; 71(2): e12753, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34129741

RESUMO

Homeobox genes encode transcription factors controlling development; however, a number of homeobox genes are expressed postnatally specifically in melatonin-producing pinealocytes of the pineal gland and photoreceptors of the retina along with transcripts devoted to melatonin synthesis and phototransduction. Homeobox genes regulate melatonin synthesis in pinealocytes, but some homeobox genes also seem to be involved in regulation of retinal phototransduction. Due to the lack of photoreceptor models, we here introduce the rat pinealocyte culture as an in vitro model for studying retinal phototransduction. Systematic qPCR analyses were performed on the rat retina and pineal gland in 24 hour in vivo series and on primary cultures of rat pinealocytes: All homeobox genes and melatonin synthesis components, as well as nine out of ten phototransduction genes, were readily detectable in all three experimental settings, confirming molecular similarity between cultured pinealocytes and in vivo retinal tissue. 24 hours circadian expression was mostly confined to transcripts in the pineal gland, including a novel rhythm in arrestin (Sag). Individual knockdown of the homeobox genes orthodenticle homeobox 2 (Otx2), cone-rod homeobox (Crx) and LIM homeobox 4 (Lhx4) in pinealocyte culture using siRNA resulted in specific downregulation of transcripts representing all levels of phototransduction; thus, all phototransduction genes studied in culture were affected by one or several siRNA treatments. Histological colocalization of homeobox and phototransduction transcripts in the rat retinal photoreceptor was confirmed by RNAscope in situ hybridization, thus suggesting that homeobox gene-encoded transcription factors control postnatal expression of phototransduction genes in the retinal photoreceptor.


Assuntos
Melatonina , Glândula Pineal , Animais , Genes Homeobox , Transdução de Sinal Luminoso , Melatonina/metabolismo , Glândula Pineal/metabolismo , Ratos , Fatores de Transcrição/metabolismo
10.
Neuroendocrinology ; 110(7-8): 604-615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31557761

RESUMO

Neurons of the cerebellar cortex contain a circadian oscillator, with circadian expression of clock genes being controlled by the master clock of the suprachiasmatic nucleus (SCN). However, the signaling pathway connecting the SCN to the cerebellum is unknown. Glucocorticoids exhibit a prominent SCN-dependent circadian rhythm, and high levels of the glucocorticoid receptor have been reported in the cerebellar cortex; we therefore hypothesized that glucocorticoids may control the rhythmic expression of clock genes in the cerebellar cortex. We here applied a novel methodology by combining the electrolytic lesion of the SCN with implantation of a micropump programmed to release corticosterone in a circadian manner mimicking the endogenous hormone profile. By use of this approach, we were able to restore the corticosterone rhythm in SCN-lesioned male rats. Clock gene expression in the cerebellum was abolished in rats with a lesioned SCN, but exogenous corticosterone restored the daily rhythm in clock gene expression in the cerebellar cortex, as revealed by quantitative real-time PCR and radiochemical in situ hybridization for the detection of the core clock genes Per1, Per2, and Arntl. On the contrary, exogenous hormone did not restore circadian rhythms in body temperature and running activity. RNAscope in situ hybridization further revealed that the glucocorticoid receptor colocalizes with clock gene products in cells of the cerebellar cortex, suggesting that corticosterone exerts its actions by binding directly to receptors in neurons of the cerebellum. However, rhythmic clock gene expression in the cerebellum was also detectable in adrenalectomized rats, indicating that additional control mechanisms exist. These data show that the cerebellar circadian oscillator is influenced by SCN-dependent rhythmic release of corticosterone.


Assuntos
Cerebelo , Relógios Circadianos , Corticosterona/farmacocinética , Fatores de Transcrição ARNTL/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/efeitos dos fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Corticosterona/administração & dosagem , Corticosterona/farmacologia , Esquema de Medicação , Liberação Controlada de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização In Situ/métodos , Bombas de Infusão Implantáveis , Injeções Intraventriculares , Masculino , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/metabolismo , Ratos , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo
11.
Fluids Barriers CNS ; 15(1): 27, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30249273

RESUMO

BACKGROUND: Cerebral edema can cause life-threatening increase in intracranial pressure. Besides surgical craniectomy performed in severe cases, osmotherapy may be employed to lower the intracranial pressure by osmotic extraction of cerebral fluid upon intravenous infusion of mannitol or NaCl. A so-called rebound effect can, however, hinder continuous reduction in cerebral fluid by yet unresolved mechanisms. METHODS: We determined the brain water and electrolyte content in healthy rats treated with osmotherapy. Osmotherapy (elevated plasma osmolarity) was mediated by intraperitoneal injection of NaCl or mannitol with inclusion of pharmacological inhibitors of selected ion-transporters present at the capillary lumen or choroidal membranes. Brain barrier integrity was determined by fluorescence detection following intravenous delivery of Na+-fluorescein. RESULTS: NaCl was slightly more efficient than mannitol as an osmotic agent. The brain water loss was only ~ 60% of that predicted from ideal osmotic behavior, which could be accounted for by cerebral Na+ and Cl- accumulation. This electrolyte accumulation represented the majority of the rebound response, which was unaffected by the employed pharmacological agents. The brain barriers remained intact during the elevated plasma osmolarity. CONCLUSIONS: A brain volume regulatory response occurs during osmotherapy, leading to the rebound response. This response involves brain accumulation of Na+ and Cl- and takes place by unresolved molecular mechanisms that do not include the common ion-transporting mechanisms located in the capillary endothelium at the blood-brain barrier and in the choroid plexus epithelium at the blood-CSF barrier. Future identification of these ion-transporting routes could provide a pharmacological target to prevent the rebound effect associated with the widely used osmotherapy.


Assuntos
Edema Encefálico/metabolismo , Encéfalo/metabolismo , Cloro/metabolismo , Sódio/metabolismo , Água/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Transporte de Íons , Manitol/administração & dosagem , Manitol/metabolismo , Concentração Osmolar , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem
13.
J Physiol ; 596(20): 4983-4994, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30079574

RESUMO

KEY POINTS: GABA is an essential molecule for sensory information processing. It is usually assumed to be released by neurons. Here we show that in the dorsal horn of the spinal cord, astrocytes respond to glutamate by releasing GABA. Our findings suggest a novel role for astrocytes in somatosensory information processing. ABSTRACT: Astrocytes participate in neuronal signalling by releasing gliotransmitters in response to neurotransmitters. We investigated if astrocytes from the dorsal horn of the spinal cord of adult red-eared turtles (Trachemys scripta elegans) release GABA in response to glutamatergic receptor activation. For this, we developed a GABA sensor consisting of HEK cells expressing GABAA receptors. By positioning the sensor recorded in the whole-cell patch-clamp configuration within the dorsal horn of a spinal cord slice, we could detect GABA in the extracellular space. Puff application of glutamate induced GABA release events with time courses that exceeded the duration of inhibitory postsynaptic currents by one order of magnitude. Because the events were neither affected by extracellular addition of nickel, cadmium and tetrodotoxin nor by removal of Ca2+ , we concluded that they originated from non-neuronal cells. Immunohistochemical staining allowed the detection of GABA in a fraction of dorsal horn astrocytes. The selective stimulation of A∂ and C fibres in a dorsal root filament induced a Ca2+ increase in astrocytes loaded with Oregon Green BAPTA. Finally, chelating Ca2+ in a single astrocyte was sufficient to prevent the GABA release evoked by glutamate. Our results indicate that glutamate triggers the release of GABA from dorsal horn astrocytes with a time course compatible with the integration of sensory inputs.


Assuntos
Astrócitos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Potenciais Sinápticos , Ácido gama-Aminobutírico/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/fisiologia , Tartarugas
14.
Cereb Cortex ; 28(2): 644-657, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052921

RESUMO

A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Córtex Cerebral/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Neurônios/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Córtex Cerebral/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Depressão/metabolismo , Depressão/psicologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/química
15.
J Neurochem ; 142(6): 841-856, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28707700

RESUMO

The suprachiasmatic nucleus houses the central circadian clock and is characterized by the timely regulated expression of clock genes. However, neurons of the cerebellar cortex also contain a circadian oscillator with circadian expression of clock genes being controlled by the suprachiasmatic nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum is involved in circadian physiology and food anticipation, we therefore by use of Cre-LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located in this cell type. We here report that deletion of Arntl heavily influences the molecular clock of the cerebellar cortex with significantly altered and arrhythmic expression of other central clock and clock-controlled genes. On the other hand, daily expression of clock genes in the suprachiasmatic nucleus was unaffected. Telemetric registrations in different light regimes did not detect significant differences in circadian rhythms of running activity and body temperature between Arntl conditional knockout mice and controls. Furthermore, food anticipatory behavior did not differ between genotypes. These data suggest that Arntl is an essential part of the cerebellar oscillator; however, the oscillator of the granular layer of the cerebellar cortex does not control traditional circadian parameters or food anticipation.

16.
J Neurochem ; 143(1): 100-111, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28675567

RESUMO

The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential for pineal gland development. In contrast, deletion of Rax in the eye generated an anophthalmic phenotype. In addition to the loss of central visual pathways, the suprachiasmatic nucleus of the hypothalamus housing the circadian clock was absent, indicating that the retinohypothalamic tract is required for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas the paired box 6 homeobox gene, known to regulate pineal development, was up-regulated. By injecting isoproterenol, which mimics a nocturnal situation in the pineal gland, we were able to induce pineal expression of Aanat in the Rax conditional knockout mouse, but Aanat transcript levels were significantly lower than those of Rax-proficient mice. Our data suggest that Rax controls pineal gene expression and via Aanat may modulate melatonin synthesis.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas do Olho/fisiologia , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/fisiologia , Glândula Pineal/metabolismo , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/fisiologia , Vias Visuais/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/biossíntese , Arilalquilamina N-Acetiltransferase/genética , Proteínas do Olho/genética , Feminino , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Células Neuroendócrinas/metabolismo , Retina/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
17.
Acta Ophthalmol ; 95(7): 717-726, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28371363

RESUMO

PURPOSE: The vertebrate retina contains a circadian clock participating in adaptations to day and night vision. This peripheral clock is independent of the master clock in the suprachiasmatic nucleus (SCN). The retinal clock is located in several cell types, including the photoreceptors. To investigate the role of the circadian clock of the photoreceptor cells in regulation of retinal protein rhythms, we analysed diurnal protein expression in the photoreceptor-deficient cone-rod homeobox knockout mouse (Crx-/- ) and the 129/Sv mouse. METHODS: 2D gels were made from retinal homogenates of 129/Sv and Crx-/- mice killed at midday and midnight. Stained gels were analysed by use of PDQuest 2D gel analysis software. After trypsin digestion of differential expressed spots, the proteins were identified by LC-MS/MS using a nano-liquid chromatograph connected to a Q-TOF Premier mass spectrometer. These data were used to search the SWISS-PROT database. RESULTS: Both the retinae of the control and the Crx-/- mice exhibited diurnal proteins rhythms. As expected, proteins involved in phototransduction were not detected in the Crx-/- mouse; in this phenotype, however, proteins from spots showing diurnal rhythms were specifically identified as enzymes involved in glucose metabolism, Krebs cycle, and mitochondrial enzymes. Data are available via ProteomeXchange with identifier PXD005556. CONCLUSION: We show diurnal protein rhythms in the retina of a mouse lacking the rods and cones. The diurnal protein rhythms in this genotype, lacking the circadian clock of the photoreceptors, might be caused by a circadian clock in other retinal cell types or a direct light input to the retina.


Assuntos
Ritmo Circadiano , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transativadores/genética , Animais , Cegueira/genética , Cegueira/metabolismo , Cegueira/patologia , DNA/genética , Adaptação à Escuridão , Feminino , Genótipo , Proteínas de Homeodomínio/biossíntese , Masculino , Camundongos , Camundongos Knockout , Proteômica , Retina/patologia , Espectrometria de Massas em Tandem , Transativadores/biossíntese
19.
Biomed Res Int ; 2014: 946075, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24877149

RESUMO

Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.


Assuntos
Arilalquilamina N-Acetiltransferase/biossíntese , Ritmo Circadiano/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Melatonina/biossíntese , Glândula Pineal/metabolismo , Transativadores/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas de Homeodomínio/genética , Melatonina/genética , Camundongos , Ratos , Elementos de Resposta/fisiologia , Transativadores/genética
20.
J Comp Neurol ; 521(17): 4061-74, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23784879

RESUMO

Vasopressin (AVP) is both a neuroendocrine hormone located in magnocellular neurosecretory neurons of the hypothalamus of mammals but also a neurotransmitter/neuromodulator in the parvocellular suprachiasmatic nucleus (SCN). The SCN is the endogenous clock of the brain and exhibits a prominent circadian AVP rhythm. We have in this study of the brown 129sv mouse and the visual blind cone-rod homeobox gene knock out mouse (Crx(-/-) ) with degeneration of the retinal rods and cones, but a preserved non-image forming optic system, studied the temporal Avp expression in both the neurosecretory magnocellular and parvocellular vasopressinergic systems in both genotypes. We here present a detailed mapping of all classical hypothalamopituitary and accessory magnocellular nuclei and neurons in the hypothalamus by use of immunohistochemistry and in situ hybridization in both genotypes. Semiquantitative in situ hybridization revealed a very high expression of Avp mRNA in all the magnocellular nuclei compared with a much lower level in the parvocellular suprachiasmatic nucleus. In a series of mice killed every 4 hours, the Avp mRNA expression in the SCN showed a significant daily rhythm with a zenith at late day time and nadir during the dark in both the Crx(-/-) and the wild type mouse. None of the magnocellular neurosecretory neurons exhibited a diurnal vasopressin expression. Light stimulation of both genotypes during the dark period did not change the Avp expression in the SCN. This shows that Avp expression in the mouse SCN is independent of Crx-regulated photoreceptor systems.


Assuntos
Cegueira/metabolismo , Ritmo Circadiano/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Vasopressinas/biossíntese , Animais , Feminino , Proteínas de Homeodomínio , Hipotálamo/química , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Neurônios/química , Estimulação Luminosa/métodos , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/metabolismo , Transativadores , Vasopressinas/análise , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA