Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 3(4): 651-662, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881580

RESUMO

Background: Patients with diabetes exhibit an increased prevalence for emotional disorders compared with healthy humans, partially due to a shared pathogenesis including hormone resistance and inflammation, which is also linked to intestinal dysbiosis. The preventive intake of probiotic lactobacilli has been shown to improve dysbiosis along with mood and metabolism. Yet, a potential role of Lactobacillus rhamnosus (Lacticaseibacillus rhamnosus 0030) (LR) in improving emotional behavior in established obesity and the underlying mechanisms are unknown. Methods: Female and male C57BL/6N mice were fed a low-fat diet (10% kcal from fat) or high-fat diet (HFD) (45% kcal from fat) for 6 weeks, followed by daily oral gavage of vehicle or 1 × 108 colony-forming units of LR, and assessment of anxiety- and depressive-like behavior. Cecal microbiota composition was analyzed using 16S ribosomal RNA sequencing, plasma and cerebrospinal fluid were collected for metabolomic analysis, and gene expression of different brain areas was assessed using reverse transcriptase quantitative polymerase chain reaction. Results: We observed that 12 weeks of HFD feeding induced hyperinsulinemia, which was attenuated by LR application only in female mice. On the contrary, HFD-fed male mice exhibited increased anxiety- and depressive-like behavior, where the latter was specifically attenuated by LR application, which was independent of metabolic changes. Furthermore, LR application restored the HFD-induced decrease of tyrosine hydroxylase, along with normalizing cholecystokinin gene expression in dopaminergic brain regions; both tyrosine hydroxylase and cholecystokinin are involved in signaling pathways impacting emotional disorders. Conclusions: Our data show that LR attenuates depressive-like behavior after established obesity, with changes in the dopaminergic system in male mice, and mitigates hyperinsulinemia in obese female mice.

2.
Antioxidants (Basel) ; 11(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35624726

RESUMO

The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.

3.
Mol Metab ; 53: 101276, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153520

RESUMO

OBJECTIVE: Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. METHODS: Control and heterozygous whole-body HSP60 knockout (Hsp60+/-) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. RESULTS: Male Hsp60+/- mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/- mice in a glucose tolerance test. However, Hsp60+/- mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. CONCLUSIONS: We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance.


Assuntos
Tecido Adiposo Branco/metabolismo , Chaperonina 60/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Animais , Células Cultivadas , Chaperonina 60/deficiência , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Homeostase , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência
4.
Antioxidants (Basel) ; 10(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946318

RESUMO

Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.

5.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369454

RESUMO

Insulin receptor signaling is crucial for white adipose tissue (WAT) function. Consequently, lack of insulin receptor (IR) in WAT results in a diabetes-like phenotype. Yet, causes for IR downregulation in WAT of patients with diabetes are not well understood. By using multiple mouse models of obesity and insulin resistance, we identify a common downregulation of IR with a reduction of mRNA expression of selenoproteins Txnrd3, Sephs2, and Gpx3 in gonadal adipose tissue. Consistently, GPX3 is also decreased in adipose tissue of insulin-resistant and obese patients. Inducing Gpx3 expression via selenite treatment enhances IR expression via activation of the transcription factor Sp1 in 3T3-L1 preadipocytes and improves adipocyte differentiation and function. Feeding mice a selenium-enriched high-fat diet alleviates diet-induced insulin resistance with increased insulin sensitivity, decreased tissue inflammation, and elevated IR expression in WAT. Again, IR expression correlated positively with Gpx3 expression, a phenotype that is also conserved in humans. Consequently, decreasing GPx3 using siRNA technique reduced IR expression and insulin sensitivity in 3T3-L1 preadipocytes. Overall, our data identify GPx3 as a potentially novel regulator of IR expression and insulin sensitivity in adipose tissue.


Assuntos
Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Regulação da Expressão Gênica , Glutationa Peroxidase/biossíntese , Resistência à Insulina , Receptor de Insulina/biossíntese , Células 3T3-L1 , Animais , Glutationa Peroxidase/genética , Camundongos , Receptor de Insulina/genética
6.
Mol Metab ; 21: 68-81, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30670351

RESUMO

OBJECTIVE: Insulin action in the brain controls metabolism and brain function, which is linked to proper mitochondrial function. Conversely, brain insulin resistance associates with mitochondrial stress and metabolic and neurodegenerative diseases. In the present study, we aimed to decipher the impact of hypothalamic insulin action on mitochondrial stress responses, function and metabolism. METHODS: To investigate the crosstalk of insulin action and mitochondrial stress responses (MSR), namely the mitochondrial unfolded protein response (UPRmt) and integrated stress response (ISR), qPCR, western blotting, and mitochondrial activity assays were performed. These methods were used to analyze the hypothalamic cell line CLU183 treated with insulin in the presence or absence of the insulin receptor as well as in mice fed a high fat diet (HFD) for three days and STZ-treated mice without or with insulin therapy. Intranasal insulin treatment was used to investigate the effect of acute brain insulin action on metabolism and mitochondrial stress responses. RESULTS: Acute HFD feeding reduces hypothalamic mitochondrial stress responsive gene expression of Atf4, Chop, Hsp60, Hsp10, ClpP, and Lonp1 in C57BL/6N mice. We show that insulin via ERK activation increases the expression of MSR genes in vitro as well as in the hypothalamus of streptozotocin-treated mice. This regulation propagates mitochondrial function by controlling mitochondrial proteostasis and prevents excessive autophagy under serum deprivation. Finally, short-term intranasal insulin treatment activates MSR gene expression in the hypothalamus of HFD-fed C57BL/6N mice and reduces food intake and body weight development. CONCLUSIONS: We define hypothalamic insulin action as a novel master regulator of MSR, ensuring proper mitochondrial function by controlling mitochondrial proteostasis and regulating metabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipotálamo/metabolismo , Insulina/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Aumento de Peso/fisiologia , Administração Intranasal , Animais , Autofagia , Linhagem Celular , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/tratamento farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Hipotálamo/patologia , Insulina/administração & dosagem , Insulina/uso terapêutico , Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteostase , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estreptozocina/farmacologia
7.
Mol Metab ; 12: 113-121, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29681509

RESUMO

OBJECTIVE: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). METHODS: To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 µm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. RESULTS: In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. CONCLUSION: These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Basal , Encéfalo/diagnóstico por imagem , Jejum/metabolismo , Glicólise , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Via de Pentose Fosfato
8.
Am J Physiol Endocrinol Metab ; 307(9): E800-12, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25205820

RESUMO

Bordetella pertussis toxin (PTx), also known as islet-activating protein, induces insulin secretion by ADP-ribosylation of inhibitory G proteins. PTx-induced insulin secretion may result either from inactivation of Gα(o) proteins or from combined inactivation of Gα(o), Gα(i1), Gα(i2), and Gα(i3) isoforms. However, the specific role of Gα(i2) in pancreatic ß-cells still remains unknown. In global (Gα(i2)(-/-)) and ß-cell-specific (Gα(i2)(ßcko)) gene-targeted Gα(i2) mouse models, we studied glucose homeostasis and islet functions. Insulin secretion experiments and intracellular Ca²âº measurements were used to characterize Gα(i2) function in vitro. Gα(i2)(-/-) and Gα(i2)(ßcko) mice showed an unexpected metabolic phenotype, i.e., significantly lower plasma insulin levels upon intraperitoneal glucose challenge in Gα(i2)(-/-) and Gα(i2)(ßcko) mice, whereas plasma glucose concentrations were unchanged in Gα(i2)(-/-) but significantly increased in Gα(i2)(ßcko) mice. These findings indicate a novel albeit unexpected role for Gα(i2) in the expression, turnover, and/or release of insulin from islets. Detection of insulin secretion in isolated islets did not show differences in response to high (16 mM) glucose concentrations between control and ß-cell-specific Gα(i2)-deficient mice. In contrast, the two- to threefold increase in insulin secretion evoked by L-arginine or L-ornithine (in the presence of 16 mM glucose) was significantly reduced in islets lacking Gα(i2). In accord with a reduced level of insulin secretion, intracellular calcium concentrations induced by the agonistic amino acid L-arginine did not reach control levels in ß-cells. The presented analysis of gene-targeted mice provides novel insights in the role of ß-cell Gα(i2) showing that amino acid-induced insulin-release depends on Gα(i2).


Assuntos
Arginina/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/agonistas , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ornitina/metabolismo , Regulação para Cima , Animais , Glicemia/análise , Sinalização do Cálcio , Cruzamentos Genéticos , Regulação para Baixo , Imunofluorescência , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Hipoglicemia/sangue , Hipoglicemia/metabolismo , Hipoglicemia/prevenção & controle , Insulina/sangue , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ornitina/sangue , Organismos Livres de Patógenos Específicos , Técnicas de Cultura de Tecidos
9.
Biochem Biophys Res Commun ; 450(2): 1089-94, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24996176

RESUMO

The health-promoting effects of regular exercise are well known, and myokines may mediate some of these effects. The small leucine-rich proteoglycan decorin has been described as a myokine for some time. However, its regulation and impact on skeletal muscle has not been investigated in detail. In this study, we report decorin to be differentially expressed and released in response to muscle contraction using different approaches. Decorin is released from contracting human myotubes, and circulating decorin levels are increased in response to acute resistance exercise in humans. Moreover, decorin expression in skeletal muscle is increased in humans and mice after chronic training. Because decorin directly binds myostatin, a potent inhibitor of muscle growth, we investigated a potential function of decorin in the regulation of skeletal muscle growth. In vivo overexpression of decorin in murine skeletal muscle promoted expression of the pro-myogenic factor Mighty, which is negatively regulated by myostatin. We also found Myod1 and follistatin to be increased in response to decorin overexpression. Moreover, muscle-specific ubiquitin ligases atrogin1 and MuRF1, which are involved in atrophic pathways, were reduced by decorin overexpression. In summary, our findings suggest that decorin secreted from myotubes in response to exercise is involved in the regulation of muscle hypertrophy and hence could play a role in exercise-related restructuring processes of skeletal muscle.


Assuntos
Decorina/metabolismo , Contração Muscular , Músculo Esquelético/fisiologia , Adolescente , Adulto , Animais , Células Cultivadas , Exercício Físico , Feminino , Humanos , Masculino , Camundongos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Condicionamento Físico Animal
10.
Mol Cell Biol ; 34(2): 290-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24216763

RESUMO

The homeodomain transcription factor Prep1 was previously shown to regulate insulin sensitivity. Our aim was to study the specific role of Prep1 for the regulation of energy metabolism in skeletal muscle. Muscle-specific ablation of Prep1 resulted in increased expression of respiratory chain subunits. This finding was consistent with an increase in mitochondrial enzyme activity without affecting mitochondrial volume fraction as assessed by electron microscopy. Metabolic phenotyping revealed no differences in daily energy expenditure or body composition. However, during treadmill exercise challenge, Prep1 ablation resulted in a higher maximal oxidative capacity and better endurance. Elevated PGC-1α expression was identified as a cause for increased mitochondrial capacity in Prep1 ablated mice. Prep1 stabilizes p160 Mybbp1a, a known inhibitor of PGC-1α activity. Thereby, p160 protein levels were significantly lower in the muscle of Prep1 ablated mice. By a chromatin immunoprecipitation-sequencing (ChIP-seq) approach, PREP1 binding sites in genes encoding mitochondrial components (e.g., Ndufs2) were identified that might be responsible for elevated proteins involved in oxidative phosphorylation (OXPHOS) in the muscle of Prep1 null mutants. These results suggest that Prep1 exhibits additional direct effects on regulation of mitochondrial proteins. We therefore conclude that Prep1 is a regulator of oxidative phosphorylation components via direct and indirect mechanisms.


Assuntos
Proteínas de Homeodomínio/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Resistência Física , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
11.
Physiol Behav ; 105(3): 791-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22061427

RESUMO

The central melanocortin system regulates lipid metabolism in peripheral tissues such as white adipose tissue. Alterations in the activity of sympathetic nerves connecting hypothalamic cells expressing melanocortin 3/4 receptors (MC3/4R) with white adipocytes have been shown to partly mediate these effects. Interestingly, hypothalamic neurons producing corticotropin-releasing hormone and thyrotropin-releasing hormone co-express MC4R. Therefore we hypothesized that regulation of hypothalamo-pituitary adrenal (HPA) and hypothalamo-pituitary thyroid (HPT) axes activity by the central melanocortin system could contribute to its control of peripheral lipid metabolism. To test this hypothesis, we chronically infused rats intracerebroventricularly (i.c.v.) either with an MC3/4R antagonist (SHU9119), an MC3/4R agonist (MTII) or saline. Rats had been previously adrenalectomized (ADX) and supplemented daily with 1mg/kg corticosterone (s.c.), thyroidectomized (TDX) and supplemented daily with 10 µg/kgL-thyroxin (s.c.), or sham operated (SO). Blockade of MC3/4R signaling with SHU9119 increased food intake and body mass, irrespective of gland surgery. The increase in body mass was accompanied by higher epididymal white adipose tissue (eWAT) weight and higher mRNA content of lipogenic enzymes in eWAT. SHU9119 infusion increased triglyceride content in the liver of SO and TDX rats, but not in those of ADX rats. Concomitantly, mRNA expression of lipogenic enzymes in liver was increased in SO and TDX, but not in ADX rats. We conclude that the HPA and HPT axes do not play an essential role in mediating central melanocortinergic effects on white adipose tissue and liver lipid metabolism. However, while basal hepatic lipid metabolism does not depend on a functional HPA axis, the induction of hepatic lipogenesis due to central melanocortin system blockade does require a functional HPA axis.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Fígado/metabolismo , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Triglicerídeos/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adrenalectomia , Hormônio Adrenocorticotrópico/genética , Hormônio Adrenocorticotrópico/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/administração & dosagem , Corticosterona/metabolismo , Sistemas de Liberação de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores da Corticotropina/agonistas , Receptores da Corticotropina/antagonistas & inibidores , Tireoidectomia , Tiroxina/farmacologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
12.
Endocrinology ; 152(12): 4641-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21990309

RESUMO

Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial ß-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh(-/-)) displayed a lower body weight and a reduced fat mass in comparison with hadh(+/+) mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh(-/-) mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh(-/-) mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion.


Assuntos
Acil-CoA Desidrogenase/fisiologia , Peso Corporal , Butiril-CoA Desidrogenase/fisiologia , Insulina/metabolismo , Termogênese , Animais , Glicemia , Temperatura Baixa , Metabolismo Energético , Secreção de Insulina , Camundongos , Camundongos Knockout , Triglicerídeos/sangue
13.
Diabetes ; 60(5): 1566-76, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21464444

RESUMO

OBJECTIVE: The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown. RESEARCH DESIGN AND METHODS: The expression of cGKI in tissues relevant to insulin action was analyzed by immunohistochemistry. The metabolic consequences of a genetic deletion of cGKI were studied in mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice). RESULTS: In wild-type mice, cGKI protein was detected in hepatic stellate cells, but not in hepatocytes, skeletal muscle, fat cells, or pancreatic ß-cells. Compared with control animals, cGKI-SM mice had higher energy expenditure in the light phase associated with lower body weight and fat mass and increased insulin sensitivity. Mutant mice also showed higher fasting glucose levels, whereas insulin levels and intraperitoneal glucose tolerance test results were similar to those in control animals. Interleukin (IL)-6 signaling was strongly activated in the liver of cGKI-SM mice as demonstrated by increased levels of IL-6, phospho-signal transducer and activator of transcription 3 (Tyr 705), suppressor of cytokine signaling-3, and serum amyloid A2. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in the liver was impaired in cGKI-SM mice. The fraction of Mac-2-positive macrophages in the liver was significantly higher in cGKI-SM mice than in control mice. In contrast with cGKI-SM mice, conditional knockout mice lacking cGKI only in the nervous system were normal with respect to body weight, energy expenditure, fasting glucose, IL-6, and insulin action in the liver. CONCLUSIONS: Genetic deletion of cGKI in non-neuronal cells results in a complex metabolic phenotype, including liver inflammation and fasting hyperglycemia. Loss of cGKI in hepatic stellate cells may affect liver metabolism via a paracrine mechanism that involves enhanced macrophage infiltration and IL-6 signaling.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Jejum/sangue , Hiperglicemia/enzimologia , Inflamação/genética , Fígado/imunologia , Animais , Western Blotting , Peso Corporal/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/genética , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Jejum/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Músculo Esquelético/metabolismo , Fosforilação/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA