Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(6): 2836-2845, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753397

RESUMO

Chemiresistive polymer-based sensors are promising platforms for monitoring various gases and volatile organic compounds. While they offer appealing attributes, such as ease of fabrication, flexibility, and cost-effectiveness, most of these sensors have a nearly identical response to cross-reactive gases, such as ammonia (NH3) and carbon dioxide (CO2). Aiming to address the shortcomings of chemiresistive polymer-based sensors in selectivity and simultaneous measurements of cross-reactive gases, a chemiresistive sensor array was developed consisting of components sensitive to carbon dioxide and ammonia as well as a control segment to provide the baseline. The designed system demonstrated a wide detection range for both ammonia (ranging from 0.05 to 1000 ppm) and carbon dioxide (ranging from 103 to 106 ppm) at both room and low temperatures (e.g., 4 °C). Our results also demonstrate the ability of this sensor array for the simultaneous detection of carbon dioxide and ammonia selectively in the presence of other gases and volatile organic compounds. Finally, the array was used to monitor CO2/NH3 in real food samples to demonstrate the potential for real-world applications.


Assuntos
Amônia , Dióxido de Carbono , Amônia/análise , Dióxido de Carbono/análise , Gases/análise , Gases/química
2.
ACS Sens ; 9(4): 1735-1742, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572917

RESUMO

Carbon dioxide (CO2) gas sensing and monitoring have gained prominence for applications such as smart food packaging, environmental monitoring of greenhouse gases, and medical diagnostic tests. Although CO2 sensors based on metal oxide semiconductors are readily available, they often suffer from limitations such as high operating temperatures (>250 °C), limited response at elevated humidity levels (>60% RH), bulkiness, and limited selectivity. In this study, we designed a chemiresistive sensor for CO2 detection to overcome these problems. The sensing material of this sensor consists of a CO2 switchable polymer based on N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) and methoxyethyl methacrylate (MEMA) [P(D-co-M)], and diethylamine. The designed sensor has a detection range for CO2 between 103 and 106 ppm even at high humidity levels (>80% RH), and it is capable of differentiating ammonia at low concentrations (0.1-5 ppm) from CO2. The addition of diethylamine improved sensor performance such as selectivity, response/recovery time, and long-term stability. These data demonstrate the potential of using this sensor for the detection of food spoilage.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/análise , Umidade , Acrilamidas/química , Polímeros/química , Metacrilatos/química , Gases/análise
3.
Biosens Bioelectron ; 251: 116100, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364327

RESUMO

Invasive methods such as blood collection and biopsy are commonly used for testing liver and kidney function, which are painful, time-consuming, require trained personnel, and may not be easily accessible to people for their routine checkup. Early diagnosis of liver and kidney diseases can prevent severe symptoms and ensure better management of these patients. Emerging approaches such as breath and sweat analysis have shown potential as non-invasive methods for disease diagnosis. Among the many markers, ammonia is often used as a biomarker for the monitoring of liver and kidney functions. In this review we provide an insight into the production and expulsion of ammonia gas in the human body, the different diseases that could potentially use ammonia as biomarker and analytical devices such as chemiresistive gas sensors for non-invasive monitoring of this gas. The review also provides an understanding into the different materials, doping agents and substrates used to develop such multifunctional sensors. Finally, the current challenges and the possible future trends have been discussed.


Assuntos
Amônia , Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , Testes Imediatos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA