Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490467

RESUMO

BACKGROUND: Abiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic stresses. Therefore, it is crucial to identify TFs associated with abiotic stress response for breeding of abiotic stress tolerant crop cultivars. METHODS: Based on a machine learning framework, a computational model was envisaged to predict TFs associated with abiotic stress response in plants. To numerically encode TF sequences, four distinct sequence derived features were generated. The prediction was performed using ten shallow learning and four deep learning algorithms. For prediction using more pertinent and informative features, feature selection techniques were also employed. RESULTS: Using the features chosen by the light-gradient boosting machine-variable importance measure (LGBM-VIM), the LGBM achieved the highest cross-validation performance metrics (accuracy: 86.81%, auROC: 92.98%, and auPRC: 94.03%). Further evaluation of the proposed model (LGBM prediction method + LGBM-VIM selected features) was also done using an independent test dataset, where the accuracy, auROC and auPRC were observed 81.98%, 90.65% and 91.30%, respectively. CONCLUSIONS: To facilitate the adoption of the proposed strategy by users, the approach was implemented as a prediction server called ASPTF, accessible at https://iasri-sg.icar.gov.in/asptf/. The developed approach and the corresponding web application are anticipated to supplement experimental methods in the identification of transcription factors (TFs) responsive to abiotic stress in plants.


Assuntos
Aprendizado de Máquina , Estresse Fisiológico , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Algoritmos , Regulação da Expressão Gênica de Plantas , Biologia Computacional/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/genética
2.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978420

RESUMO

Class A serine ß-lactamases (SBLs) have a conserved non-active site structural domain called the omega loop (Ω-loop), in which a glutamic acid residue is believed to be directly involved in the hydrolysis of ß-lactam antibiotics by providing a water molecule during catalysis. We aimed to design and characterise potential pentapeptides to mask the function of the Ω-loop of ß-lactamases and reduce their efficacy, along with potentiating the ß-lactam antibiotics and eventually decreasing ß-lactam resistance. Considering the Ω-loop sequence as a template, a group of pentapeptide models were designed, validated through docking, and synthesised using solid-phase peptide synthesis (SPPS). To check whether the ß-lactamases (BLAs) were inhibited, we expressed specific BLAs (TEM-1 and SHV-14) and evaluated the trans-expression through a broth dilution method and an agar dilution method (HT-SPOTi). To further support our claim, we conducted a kinetic analysis of BLAs with the peptides and employed molecular dynamics (MD) simulations of peptides. The individual presence of six histidine-based peptides (TSHLH, ETHIH, ESRLH, ESHIH, ESRIH, and TYHLH) reduced ß-lactam resistance in the strains harbouring BLAs. Subsequently, we found that the combinational effect of these peptides and ß-lactams sensitised the bacteria towards the ß-lactam drugs. We hypothesize that the antimicrobial peptides obtained might be considered among the novel inhibitors that can be used specifically against the Ω-loop of the ß-lactamases.

3.
Genomics Inform ; 20(1): e5, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35399004

RESUMO

Non-syndromic hearing loss (NSHL) is a common hereditary disorder. Both clinical and genetic heterogeneity has created many obstacles to understanding the causes of NSHL. The present study has attempted to ravel the genetic aetiology in NSHL progression and to screen out potential target genes using computational approaches. The reported NSHL target genes (2009-2020) have been studied by analyzing different biochemical and signaling pathways, interpretation of their functional association network, and discovery of important regulatory interactions with three previously established miRNAs in the human inner ear as well as in NSHL such as miR-183, miR-182, and miR-96. This study has identified SMAD4 and SNAI2 as the most putative target genes of NSHL. But pathogenic and deleterious non-synonymous single nucleotide polymorphisms discovered within SMAD4 is anticipated to have an impact on NSHL progression. Additionally, the identified deleterious variants in the functional domains of SMAD4 added a supportive clue for further study. Thus, the identified deleterious variant i.e., rs377767367 (G491V) in SMAD4 needs further clinical validation. The present outcomes would provide insights into the genetics of NSHL progression.

4.
Genomics Inform ; 19(1): e7, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33840171

RESUMO

Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

5.
Comput Biol Med ; 130: 104203, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450502

RESUMO

Due to several limitations of the only available BCG vaccine, to generate adequate protective immune responses, it is important to develop potent and cost-effective vaccines against tuberculosis (TB). In this study, we have used an immune-informatics approach to identify potential peptide based vaccine targets against TB. The proteome of Mycobacterium tuberculosis (Mtb), the causative agent of TB, was analyzed for secretory or surface localized antigenic proteins as potential vaccine candidates. The T- and B-cell epitopes as well as MHC molecule binding efficiency were identified and mapped in the modelled structures of the selected proteins. Based on antigenicity score and molecular dynamic simulation (MD) studies two peptides namely Pep-9 and Pep-15 were analyzed, modelled and docked with MHC-I and MHC-II structures. Both peptides exhibited no cytotoxicity and were able to induce proinflammatory cytokine secretion in stimulated macrophages. The molecular docking, MD and in-vitro studies of the predicted B and T-cell epitopes of Pep-9 and Pep-15 peptides with the modelled MHC structures exhibited strong binding affinity and antigenic properties, suggesting that the complex is stable, and that these peptides can be considered as a potential candidates for the development of vaccine against TB.


Assuntos
Mycobacterium tuberculosis , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe II , Simulação de Acoplamento Molecular , Peptídeos
6.
Genomics Inform ; 18(4): e43, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33412759

RESUMO

The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-Cov-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.

7.
J Biomol Struct Dyn ; 38(3): 807-826, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30836878

RESUMO

Aryl Hydrocarbon Receptor (AhR) is a key player to regulate the expression of a group of enzymes known as cytochrome P450s (CYPs) super family (CYP1A1, CYP1B1, CYP2B6, and CYP2E1) which metabolites diverse endogenous as well as toxic compounds such as Benzo[a] Pyrene (B[a] P) and TCDD. B[a] P induces oxidative stress and causes degeneration of dopaminergic neurons in the midbrain, may leads to Parkinson's disease (PD). The metabolism of B[a] P through the expression of CYPs is mainly triggered after binding of B[a] P within ligand binding domain of AhR. But, the molecular mechanism of AhR mediated xenobiotic metabolism in presence of diverse phytochemicals is yet to be studied. The solved AhR (PDB ID: 5NJ8, 23-273aa) structure lacks information for ligand binding domain therefore both wild type and mutant models were predicted and screened virtually against sixty one natural compounds. The result proposed withaferin A, withanolide A, withanolide B, withanolide D and withanone of plant Withania Somnifera as efficient ligand against both wild type and mutants (V381A and V381D) AhR models. However, in silico studies hypothesised withanolide A as a potent phytochemical to trigger the AhR mediated gene regulation activity of CYPs. The in vivo study in zebra fish model proposed about the neuro protective role of W. Somnifera leaf extract in presence of B[a]P. The present study would throw lights on the molecular mechanism of phytochemicals mediated AhR activity which may be useful in treatment of PD. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação por Computador , Proteínas Mutantes/metabolismo , Doença de Parkinson/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Receptores de Hidrocarboneto Arílico/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Citocromo P-450 CYP1A1/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores de Hidrocarboneto Arílico/química , Peixe-Zebra
8.
J Biomol Struct Dyn ; 37(13): 3388-3398, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30132739

RESUMO

The emergence of multidrug-resistant Mycobacterium tuberculosis (M.tb) has become one of the major hurdles in the treatment of tuberculosis (TB). Drug-resistant M.tb has evolved with various strategies to avoid killing by the anti-tubercular drugs. Thus, there is a rising need to develop effective anti-TB drugs to improve the treatment of these strains. Traditional drug design approach has earned little success due to time and the cost involved in the process of development of anti-infective drugs. Numerous reports have demonstrated that several mutations in the drug target sites cause emergence of drug-resistant M.tb strains. In this study, we performed computational mutational analysis of M.tb inhA, fabD, and ahpC genes, which are the primary targets for first-line isoniazid (INH) drug. In silico virtual drug screening was performed to identify the potent drugs from a ChEMBL compound library to improve the treatment of INH-resistant M.tb. Further, these compounds were analyzed for their binding efficiency against active drug binding cavity of M.tb wild-type and mutant InhA, FabD and AhpC proteins. The drug efficacy of predicted lead compounds was verified by molecular docking using M.tb wild-type and mutant InhA, FabD and AhpC protein template models. Different in silico and pharmacophore analysis predicted three potent lead compounds with better drug-like properties against both M.tb wild-type and mutant InhA, FabD, and AhpC proteins as compared to INH drug, and thus may be considered as effective drugs for the treatment of INH-resistant M.tb strains. We hypothesize that this work may accelerate drug discovery process for the treatment of drug-resistant TB. Communicated by Ramaswamy H. Sarma.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Simulação por Computador , Descoberta de Drogas/métodos , Isoniazida/farmacologia , Proteínas Mutantes/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Mycobacterium tuberculosis/genética , Conformação Proteica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
9.
Genomics Inform ; 14(3): 96-103, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27729839

RESUMO

The influenza A (H1N1) virus, also known as swine flu is a leading cause of morbidity and mortality since 2009. There is a need to explore novel anti-viral drugs for overcoming the epidemics. Traditionally, different plant extracts of garlic, ginger, kalmegh, ajwain, green tea, turmeric, menthe, tulsi, etc. have been used as hopeful source of prevention and treatment of human influenza. The H1N1 virus contains an important glycoprotein, known as neuraminidase (NA) that is mainly responsible for initiation of viral infection and is essential for the life cycle of H1N1. It is responsible for sialic acid cleavage from glycans of the infected cell. We employed amino acid sequence of H1N1 NA to predict the tertiary structure using Phyre2 server and validated using ProCheck, ProSA, ProQ, and ERRAT server. Further, the modelled structure was docked with thirteen natural compounds of plant origin using AutoDock4.2. Most of the natural compounds showed effective inhibitory activity against H1N1 NA in binding condition. This study also highlights interaction of these natural inhibitors with amino residues of NA protein. Furthermore, among 13 natural compounds, theaflavin, found in green tea, was observed to inhibit H1N1 NA proteins strongly supported by lowest docking energy. Hence, it may be of interest to consider theaflavin for further in vitro and in vivo evaluation.

10.
Genomics Inform ; 14(3): 112-124, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27729841

RESUMO

Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs). Argonaute (AGO) protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A) with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

11.
Genomics Inform ; 14(4): 241-254, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28154518

RESUMO

Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.

12.
Genomics Inform ; 13(2): 45-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175662

RESUMO

Acute myeloid leukemia is a well characterized blood cancer in which the unnatural growth of immature white blood cell takes place, where several genes transcription is regulated by the micro RNAs (miRNAs). Argonaute (AGO) protein is a protein family that binds to the miRNAs and mRNA complex where a strong binding affinity is crucial for its RNA silencing function. By understanding pattern recognition between the miRNAs-mRNA complex and its binding affinity with AGO protein, one can decipher the regulation of a particular gene and develop suitable siRNA for the same in disease condition. In the current work, HOXA9 gene has been selected from literature, whose deregulation is well-established in acute myeloid leukemia. Four miRNAs (mir-145, mir-126, let-7a, and mir-196b) have been selected to target mRNA of HOXA9 (NCBI accession No. NM_152739.3). The binding interaction between mRNAs and mRNA of HOXA9 gene was studied computationally. From result, it was observed mir-145 has highest affinity for HOXA9 gene. Furthermore, the interaction between miRNAs-mRNA duplex of all chosen miRNAs are docked with AGO protein (PDB ID: 3F73, chain A) to study their interaction at molecular level through an in silico approach. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding of AGO-assisted miRNA based gene silencing mechanism in HOXA9 gene associated in acute myeloid leukemia computationally.

13.
J Biomol Struct Dyn ; 32(7): 1118-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23815761

RESUMO

GPR7 and GPR8 are recently deorphanized G-protein-coupled receptors that are implicated in the regulation of neuroendocrine function, feeding behavior, and energy homeostasis. Neuropeptide B (NPB) and neuropeptide W (NPW) are two membrane-bound hypothalamic peptides, which specifically antagonize GPR7 and GPR8. Despite years of research, an accurate estimation of structure and molecular recognition of these neuropeptide systems still remains elusive. Herein, we investigated the structure, orientation, and interaction of NPB and NPW in a dipalmitoylphosphatidylcholine bilayer using long-range molecular dynamics (MD) simulation. During 30-ns simulation, membrane-embedded helical axes of NPB and NPW tilted 30 and 15°, respectively, from the membrane normal in order to overcome possible hydrophobic mismatch with the lipid bilayer. The calculation of various structural parameters indicated that NPW is more rigid and compact as compared to NPB. Qualitatively, the peptides exhibited flexible N-terminal (residues 1-12) and rigid C-terminal α-helical parts (residues 13-21), confirming previous NMR data. A strong electrostatic attraction between C-termini and headgroup atoms caused translocation of the peptides towards lower leaflet of the bilayer. The stabilizing hydrogen bonds (H-bonds) between phosphate groups and Trp1, Lys3, and Arg15 of the peptides played important roles for membrane anchoring. MD simulations of Alanine (Ala) mutants revealed that WYK->Ala variant of NPB/NPW lacked crucial H-bond interactions with phospholipid headgroups and also caused severe misfolding in NPB. Altogether, the knowledge of preferred structural fold and interaction of neuropeptides within the membrane bilayer will be useful to develop synthetic agonist or antagonist peptides for GPR7 and GPR8.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Neuropeptídeos/química , Oligopeptídeos/química , Humanos , Simulação de Dinâmica Molecular
14.
Genomics Inform ; 12(4): 283-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25705171

RESUMO

Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel.

15.
Eur Biophys J ; 43(1): 35-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24297451

RESUMO

Serum paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-bound mammalian enzyme exhibiting antiatherosclerotic activity. Despite years of research, an accurate model for the binding interaction between PON1 and HDL has not been established. However, it is reported that anchoring of PON1 to HDL is mainly governed by an N-terminal alpha helix H1 and another short helix H2. Here, we studied the molecular association of full-length human PON1 (huPON1) with a HDL-mimetic dipalmitoylphosphatidylcholine (DPPC) bilayer using homology modeling and molecular dynamics simulations. Our results indicate that H1 is the highly dynamic part of huPON1, showing clockwise rotation of up to 30° within the DPPC bilayer. However, without phospholipid molecules, H1 experiences helical distortions, illustrating an incompatible HDL-anchoring conformation. Snorkeling interactions of K3, R18, and R27 together with aromatic locks formed by Y187, Y190, W194, and W202 are highly essential for anchoring of huPON1 to HDL's surface. Molecular mechanics/Poisson-Boltzmann solvent-accessible surface area (MM/PBSA) binding free energy calculation revealed that H1 displays greater binding affinity towards lipid molecules compared with H2 and H3, suggesting that H1 is the most probable HDL-binding domain of PON1. Binding free energy decomposition showed that K3, R18, and R27 interact with polar headgroups of DPPC membrane through electrostatic interaction. Moreover, Y187, Y190, W194, and W202 interact with DPPC lipids mainly through van der Waals interaction. Taken together, these results show that the transmembrane helix H1 along with the interfacial positively charged and aromatic resides were crucial for PON1's association with HDL particle. The current study will be useful towards understanding the antiatherosclerotic and bioscavenging properties of this promiscuous enzyme.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Arildialquilfosfatase/química , Bicamadas Lipídicas/química , Lipoproteínas HDL/química , Simulação de Dinâmica Molecular , Arildialquilfosfatase/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Motivos de Nucleotídeos
16.
ScientificWorldJournal ; 2012: 149361, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619594

RESUMO

The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important species. It is a euryhaline shrimp, surviving in wide-range salinity conditions. A change in gene expression has been suggested as an important component for stress management. To better understand the osmoregulatory mechanisms mediated by the gill, a subtractive and suppressive hybridization (SSH) tool was used to identify expressed transcripts linked to adaptations in saline water. A total of 117 transcripts represented potentially expressed under salinity conditions. BLAST analysis identified 22% as known genes, 9% as uncharacterized showing homologous to unannotated ESTs, and 69% as unknown sequences. All the identified known genes representing broad spectrum of biological pathways were particularly linked to stress tolerance including salinity tolerance. Expression analysis of 10 known genes and 7 unknown/uncharacterized genes suggested their upregulation in the gills of prawn exposed to saline water as compared to control indicating that these are likely to be associated with salinity acclimation. Rapid amplification of cDNA ends (RACE) was used for obtaining full-length cDNA of MRSW-40 clone that was highly upregulated during salt exposure. The sequenced ESTs presented here will have potential implications for future understanding about salinity acclimation and/or tolerance of the prawn.


Assuntos
Crustáceos/genética , Brânquias/metabolismo , RNA Mensageiro/genética , Cloreto de Sódio , Estresse Fisiológico , Animais , Sequência de Bases , Primers do DNA , Água Doce , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA